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ABSTRACT

With the development of artificial intelligence, automated decision-making systems

are increasingly integrated into various applications, such as hiring, loans, education, recom-

mendation systems, and more. These machine learning algorithms are expected to facilitate

faster, more accurate, and impartial decision-making compared to human judgments. Nev-

ertheless, these expectations are not always met in practice due to biased training data,

leading to discriminatory outcomes.

In contemporary society, countering discrimination has become a consensus among

people, leading the EU and the US to enact laws and regulations that prohibit discrimination

based on factors such as gender, age, race, and religion. Consequently, addressing algorith-

mic discrimination has garnered considerable attention, emerging as a crucial research area.

To tackle this challenge, association-based fairness notions are proposed based on two legal

doctrines of disparate treatment and disparate impact. Subsequently, several causality-based

fairness notions are introduced to provide a more comprehensive understanding of how sensi-

tive attributes influence decisions. Moreover, researchers have devised a range of pre-process,

in-process, and post-process fairness algorithms to adhere to the above fairness metrics. How-

ever, much of the literature on fair machine learning focuses on static or one-shot scenarios,

whereas real-world automated decision systems often make sequential decisions within dy-

namic environments. Consequently, current fairness algorithms cannot be directly applied to

dynamic settings to achieve long-term fairness.

In this dissertation, we investigate how to achieve long-term fairness in sequential

decision making by addressing the issue of distribution shift, defining appropriate long-term

fairness notion, and designing different fairness algorithms. Leveraging Pearl’s structural

causal model, we view the deployment of each model as a soft intervention, enabling us to



infer the post-intervention distribution and approximate the actual data distribution, thereby

mitigating the problem of distribution shift. Additionally, we propose to measure indirect

causal effects in time-lagged causal graphs as the causality-based long-term fairness.

By integrating the aforementioned techniques, we introduce an algorithm that can

concurrently learn multiple fairness models from a static dataset containing multi-step data.

Furthermore, we convert traditional optimization into performative risk optimization, fa-

cilitating the training of a single model to achieve long-term fairness. Then, we design a

three-phase deep generative framework where a single decision model is trained using high-

fidelity generated time series data, significantly enhancing the performance of the decision

model. Finally, we extend our focus to Markov decision processes, formulating a novel re-

inforcement learning algorithm that can effectively achieve both long-term and short-term

fairness simultaneously.



ACKNOWLEDGEMENTS

During my Ph.D. stage in the past few years, I have received a lot of guidance and

help from many people in my study and life. Here I want to express my sincere gratitude to

them.

First and foremost, I would like to express my sincerest gratitude to my advisor, Dr.

Lu Zhang, for his mentorship over the last five years. I appreciate all his time, guidance,

support, and patience. His rigor, enthusiasm and persistence in academic research, as well

as his patience and help to students inspired and motivated me, and taught me a lot. It’s

my luck to have a such good advisor.

I would like to thank Dr. Xintao Wu and Dr. Yongkai Wu from Clemson University.

In the collaboration, their suggestions, experience and ideas have greatly contributed to my

research work and my life.

I would like to thank my dissertation committee members, Dr. Xintao Wu, Dr. Su-

san Gauch, and Dr. Xiao Liu for serving in my dissertation committee and providing me

constructive feedback and comments to improve the quality of this dissertations.

I also thank my friends and colleagues in the Causal Artificial Intelligence Lab at the

University of Arkansas. I appreciate the collaboration with Jacob Lear. I also want to thank

my other friends and colleagues with whom I had a great time: Saima Absar, Kshitiz Tiwari,

Anidita Saha, Wen Huang, Dr. Wei Du, Dr. Depeng Xu, Dr. Panpan Zheng, Dr. Shuhan

Yuan.

Lastly, I would also like to thank my family for their love and support.



TABLE OF CONTENTS

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Fairness in Static Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Fairness in Dynamic Settings . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Structural Causal Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 Intervention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.2 Causal Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18



3.3 Fairness Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.1 Association-Based Fairness . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.2 Causality-Based Fairness . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Fair Multiple Decision Making Through Soft Interventions . . . . . . . . . . . . . 22

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Fair Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Formulating Fair Classification for Making Multiple Decisions . . . . . . . . 26

4.3.1 Deriving Loss Function and Fair Constraints . . . . . . . . . . . . . . 29

4.3.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.3 Excess Risk Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



5 Achieving Long-term Fairness in Sequential Decision Making . . . . . . . . . . . . 47

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Fairness-aware Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3 Formulating Long-term Fairness . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3.1 Causality-based Long-term Fairness . . . . . . . . . . . . . . . . . . . 51

5.3.2 Loss Function and Short-term Fairness . . . . . . . . . . . . . . . . . 53

5.4 Learning Fair Decision Models . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4.1 Formulating as Performative Risk Optimization . . . . . . . . . . . . 55

5.4.2 The Algorithm of Repeated Risk Minimization . . . . . . . . . . . . . 58

5.4.3 Convergence Analysis of RRM . . . . . . . . . . . . . . . . . . . . . . 59

5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.5.2 Training and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.5.3 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70



6 Long-term Fair Decision Making Through Deep Generative Models . . . . . . . . 71

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2 Background Revisit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.3 Long-term Fairness Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.3.1 Problem Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.3.2 Formulate Long-term Fairness . . . . . . . . . . . . . . . . . . . . . . 75

6.4 Deep Generative Framework for Achieving Long-term Fairness . . . . . . . . 78

6.4.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.4.2 Overview of the Proposed Framework . . . . . . . . . . . . . . . . . . 80

6.4.3 Phase 1: Train a Decision Classifier . . . . . . . . . . . . . . . . . . . 81

6.4.4 Phase 2: Train an RCGAN . . . . . . . . . . . . . . . . . . . . . . . . 82

6.4.5 Phase 3: Train the Long-term Fair Decision Model . . . . . . . . . . . 85

6.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.5.1 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.5.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.5.3 Implementations Details and Hyperparameters . . . . . . . . . . . . . 88



6.5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7 Achieving Long-term Fairness for Dynamic Systems Through Reinforcement Learning 94

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.2.1 Fair Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.2.2 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.2.3 Proximal Policy Optimization . . . . . . . . . . . . . . . . . . . . . . 98

7.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.3.1 Fairness Definition for Sequential Decision Making . . . . . . . . . . . 99

7.3.2 Problem Setting for Fair RL . . . . . . . . . . . . . . . . . . . . . . . 101

7.4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.4.2 Action Massaging for Short-term Fairness . . . . . . . . . . . . . . . 104



7.4.3 Advantage Regularization for Long-term Fairness . . . . . . . . . . . 105

7.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.5.1 Case Study: Bank Loans . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.5.2 Case Study: Attention Allocation . . . . . . . . . . . . . . . . . . . . 111

7.5.3 Case Study: Epidemic Control . . . . . . . . . . . . . . . . . . . . . . 114

7.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121



LIST OF FIGURES

Figure 4.1: Causal graph of toy model. . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 4.2: The causal graph for the synthetic dataset. . . . . . . . . . . . . . . . . 43

Figure 4.3: The causal graph for the Adult dataset. . . . . . . . . . . . . . . . . . . 44

Figure 5.1: A time-lagged causal graph for sequential decision making. Long-term
fairness is captured by paths in red, and short-term fairness is captured
by paths in green. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Figure 5.2: The convergence results for different values of ϵ on the synthetic dataset. 70

Figure 6.1: Diagram of training and test in long-term fair machine learning where
T ≤ l (above) and T > l (below). . . . . . . . . . . . . . . . . . . . . . . 72

Figure 6.2: A causal time series graph for sequential decision making. . . . . . . . . 75

Figure 6.3: The overview of the proposed framework. Solid arrows represent input,
and the dashed arrow represents parameter sharing. For Phase 3 only one
generator is shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Figure 6.4: The architecture of the RCGAN. . . . . . . . . . . . . . . . . . . . . . . 83

Figure 6.5: T-SNE visualization of real and generated data distributions. . . . . . . 90

Figure 6.6: Accuracy, local and long-term unfairness of different algorithms on Sim-
Loan ((a) and (b)) and Taiwan ((c) and (d)) datasets. The decision models
are trained on generated data within the time range [1, 10]. (a) and (c):
Results of evaluation on generated data within time range [1, 10]. (b) and
(d): Results of evaluation on generated data within the time range [10, 19]. 91



Figure 6.7: T-SNE of generated data distributions at time step t = 10 produced by
MLP (left) and DeepLF (right). . . . . . . . . . . . . . . . . . . . . . . 92

Figure 7.1: Experimental results for bank loans. The recorded values are averages
over 10 evaluation runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Figure 7.2: Ablation study: mean and standard deviation of short-term fairness in
each iteration measured during training. . . . . . . . . . . . . . . . . . . 111

Figure 7.3: Results for the Attention Allocation environment. The recorded values
are the averages over 10 evaluation episodes. . . . . . . . . . . . . . . . . 112

Figure 7.4: Experimental results for epidemic control. The recorded values are aver-
ages over 200 evaluation episodes. . . . . . . . . . . . . . . . . . . . . . . 113



LIST OF TABLES

Table 4.1: Dataset statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Table 4.2: Accuracy and unfairness from Unconstrained, Separate, Serial and Joint
methods on synthetic data (bold values indicate violation of fairness). . . 45

Table 4.3: Accuracy and unfairness from Unconstrained, Separate, Serial and Joint
methods on Adult data (bold values indicate violation of fairness). . . . . 46

Table 5.1: Accuracy, short-term and long-term fairness of different algorithms on the
synthetic dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Table 5.2: Accuracy, short-term and long-term fairness of different algorithms on the
semi-synthetic dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Table 6.1: The architectures of hω and hθ and hyperparameters for both datasets . . 89

Table 6.2: The architecture of RCGAN and hyperparameters for both datasets . . . 89



1 Introduction

This chapter starts by introducing the background and the major challenges of our

research. Next, we summarize the contributions of the entire research, and end with an

introduction to the structure of this dissertation.

1.1 Background

With the development of artificial intelligence, automated decision-making systems

are increasingly used in various applications, such as hiring [1, 2], loans [3, 4], education

[5, 6], recommendation systems [7, 8], etc. Based on the powerful computing ability of com-

puters and huge amount of data, it is expected that automated decision-making systems

integrated by various machine learning algorithms can generate fast, accurate and fair de-

cisions. However, such expectation cannot be met. Traditional machine learning algorithms

usually regard predictive performance as the main training goal, e.g., accuracy, which ignore

or damage the performance of the model in terms of fairness. As a result, the trained models

inherit and even amplify biases in the data and make discriminatory decisions. For exam-

ple, researchers have found that face recognition algorithms have a higher accuracy rate for

white people, but a lower recognition rate for black people [9]. Another well-known example

is COMPAS [10, 11], a software used by many US courts to assess risk of recidivism. The

software has been found to make discriminatory decisions against African-Americans, lead-

ing to their lower chances of bail. Many people’s lives are significantly impacted by those

automated decisions.

Since discriminatory decisions not only harm the interests of individuals, but also

affect the ethics of society, anti-discrimination has become a consensus among people, thus
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the EU and the US have enacted laws and regulations to prohibit discrimination. Discrimi-

nation refers to the unfair decisions towards individuals based on the memberships grouped

by their ages, races or genders, etc. In legal domain, two formal definitions of discrimination

have been introduced known as disparate treatment and disparate impact [12]. We say the

decision making process suffers from disparate treatment if membership information (i.e.,

sensitive attribute) are directly used to make decisions. If the outcomes are indirectly af-

fected by the membership information, it is the disparate impact. Compared with disparate

treatment, disparate impact is a more covert discrimination, which may exist even in seem-

ingly neural policy. According to these two legal doctrines, researchers have proposed many

fairness notions which can quantitatively measure discrimination, e.g., fairness through un-

awareness [13], demographic parity [13, 14], equalized odds [15], equal opportunity [15], etc.

These notions rely only on statistics to measure the fairness, whereas correlation does not

imply causation. Therefore, some researchers propose various causality-based fairness no-

tions with the help of causality frameworks, e.g., counterfactual fairness [16], path-specific

fairness [17], PC-fairness [18]. Causality-based fairness notions take into account the causal

structure of the problem, which reflects the causal relationship between variables and the

process of data generation. The causal structure can visually show us how membership affects

decision-making, which greatly improves the interpretability of models [19].

The proposal of the above fairness notions has greatly promoted researchers’ atten-

tion and research on fairness. Consequently, various algorithms are proposed to improve

the fairness of existing algorithms by eliminating discrimination within them. According to

the stage at which they are applied, these algorithms can generally be divided into three

categories: pre-processing, in-processing algorithms, post-processing algorithms [8, 20, 21].

As the bias mainly exists in the data, the idea of pre-processing algorithms is to remove
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the bias in the training data directly through pre-processing, which can be used to various

downstream algorithms without any modification, but may have lower accuracy and resid-

ual unfairness. The in-processing algorithms usually incorporate various fairness constraints

into the objective function and train them together, which enables models to perform well

in both good accuracy and fairness. Nevertheless, such combined objective functions lead to

non-convex optimization and suboptimal models. The post-processing algorithms are model-

agnostic since they usually promote the fairness by reassigning the predicted labels. Without

having access to the sensitive attributes, post-processing algorithms can not be used which

limits their field of application. These algorithms are mainly applied to static or one-shot

datasets and only guarantee the fairness of the algorithm in the current data.

Unlike static or one-shot settings, sequential decision-making system is a dynamic

environment where data distributions keep changing along the time and decisions made in

the past will affect the subsequent data distributions and then affect the future decisions. In

addition, applications in real life are dynamic environments rather than static environments,

so considering dynamic characteristics is more in line with real life. For example, when a

person applies for a bank loan, whether the bank grants the loan will affect the person’s

financial situation, which in turn will affect whether he can get a loan next time; If a system

makes a decision to assign police to a certain place to patrol, then that place is more likely to

have more criminal records reported, causing the system to assign police here more often, and

this circular effect is continuously amplified. The study of fairness in dynamic systems is more

complex, which makes it less studied than in static environments. Recently, some work has

begun to focus on studying fairness in dynamic environments [22, 23, 24]. Different analysis

frameworks, such as Poly Urn model [25], one-step feedback model [24] and reinforcement

learning [26], are used to study how fairness changes according to different decision-making
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policies in various specific application scenarios, e.g., labor market, hiring, resource allocation

in predictive policing, bank loan. Much literature has widely demonstrated that fairness in

static settings does not provide insight into how long-term fairness changes, and often static

fairness does not guarantee long-term fairness, and may even exacerbate discrimination [27].

Therefore, it is an important topic to study fairness in a dynamic setting and explore how

to design algorithms to achieve long-term fairness.

1.2 Challenges

Fair machine learning in static settings has been studied extensively, while long-term

fairness in sequential decision problems has only recently been concerned and some prelim-

inary exploratory work has been done. Therefore, there are still some significant challenges

to study long-term fairness, which motivate us to do relative research.

The first challenge is that there is no appropriate definition of causality-based long-

term fairness. The existing work mainly adopts definitions of fairness proposed in static fair

machine learning, e.g., demographic parity [28], equal opportunity [15], equalized odds [15].

However, those definitions are not very proper metrics to measure the long-term fairness.

Moreover, discrimination is the result of a causal relationship between a sensitive attribute

and an outcome, which is widely known and legally adopted. Statistical definitions of fairness

do not provide all the implications of causality because association does not imply causation.

A proper causality-based long-term fairness is urgently needed to guide us how to design

algorithms to achieve this goal.

The second one is distribution shift. When a model is deployed, its decisions can

cause data distribution shift, making the original training data inconsistent with the newly

generated data. For example, in the lending scenario banks decide whether to grant loans to
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the applicants and the decisions will affect applicants’ financial situation. The distribution

shift problem makes direct application of traditional supervised algorithms no longer suitable

and ignoring the distribution shift will critically affect the achievement of long-term fairness,

as long-term fairness is affected by all decisions made by the model along the time. Further,

the interaction between the user and the decision system creates a feedback loop. In a

dynamic settings, previous decisions will indirectly affect subsequent decisions by affecting

subsequent data distributions of population. Without knowing how the population would be

reshaped by decisions, enforcing any fairness constraint may create negative feedback loops

and eventually harm fairness in the long run.

Compared with supervised learning and fairness in static settings, studying fairness in

dynamic settings needs to consider multiple goals: utility, short-term fairness, and long-term

fairness. In static settings, the trade-off between fairness and utility has been pointed out

by many works. When we need to consider more objectives in more complex settings, the

relationship between multiple objectives will also become more complicated, and there may

be multiple trade-offs between them, which will make it difficult to choose hyperparameters

and evaluate the performance of models.

1.3 Contributions

Inspired by current research and analysis of above challenges, our goal in this disser-

tation is to propose an appropriate definition of long-term fairness and design algorithms to

achieve long-term fairness for the sequential decision-making problems. As a mathematical

framework for analyzing causality between variables, structural causal model [29] is leveraged

by us as the main tool to study long-term fairness. Within the framework of the structural

causal model, we use causal graphs to explicitly describe the dependencies between variables.
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To overcome the challenge of distribution shift, we use soft interventions to simulate the de-

ployment of decision models and infer the post-interventional distributions. We first study

how to train multiple fair classifiers simultaneously in the few-shot classification settings.

Then, we propose a causality-based long-term fairness and design a algorithm to achieve

both short-term and long-term fairness in sequential decision making. To address limitations

of last work, we further propose a three-phase deep generative framework where the decision

model is trained on high-fidelity generated time series data to achieve long-term fairness.

The contributions of this dissertation are summarized as follows.

The existing work focuses on fair machine learning in static settings where a sin-

gle fair decision model is trained. However, our study considers that a system can include

multiple decision models, each of which is required to satisfy fairness constraints. As our

first exploration of long-term fairness in dynamic settings, we have to address the challenge

of correctly estimating the data distribution affected by the deployed models. Leveraging

structural causal model, we treat each decision model as a soft intervention. Based on the

theory of causal inference and do-calculus [29], post-interventional distributions resulting

from model deployment can be derived. After knowing the post-interventional distribution,

the loss function and fair constraints can be derived as well. By optimizing the loss function

with fairness constraints, we can obtain multiple fair models simultaneously. To the best of

our knowledge, this is the first work to study fair multiple decision making where the feature

distribution may change due to the deployment of decision models.

As stated in the challenge above, although there are many definitions of fairness

in static fair machine learning, there is no definition of long-term fairness in sequential

decision making. In this work, we first define the causality-based long-term fairness as the

path-specific effect on the time-lagged causal graph. Then the problem is formulated as
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a constrained optimization problem that can achieve trade-off between long-term fairness,

short-term fairness and model utility. We find that if the post-interventional distribution is

calculated according to the conventional method, the result will become more complicated

with more time steps. To make the problem tractable, the original optimization problem

is converted to a performative risk optimization problem and we propose an optimization

algorithm by leveraging the repeated risk minimization. As far as we know, this is the first

work to propose a long-term fairness notion.

Previous work [30] proposed an approach to reduce the discrimination and bias up to

a certain time step, however a critical limitation is that to achieve fairness at certain time

step it requires a time series training dataset whose time length is greater than that time step.

We address the above limitation by developing a deep generative model that can predictively

generate data following both observational and interventional distributions, and integrating

the prediction and training into a collaborative training framework so that the predicted

data could be used as reliable data for training the decision model. The above methods are

integrated into a three-phase framework through which we can obtain a generative model

and a fair decision model. Besides, the optimization problem is formulated as a performative

risk minimization and solved by using the repeated gradient descent algorithm. Moreover,

we design and generate two datasets of synthetic data and semi-synthetic data, on which we

conduct various experiments to verify the effectiveness of proposed method.

In addition to supervised settings, we extend the study of long-term fairness to the

field of reinforcement learning. We propose an algorithm to learn fair policies for considering

both short-term and long-term fairness in sequential decision-making scenarios. To model

the dynamics of sequence decisions, this problem is formulated as a constrained Markov

decision process (MDP) with different fairness notions as constraints, so that we can readily
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adopt off-the-shelf policy optimization algorithms. As in the previous work, first we use sta-

tistical fairness notions as short-term fairness, in accordance with some laws and regulations

to ensure that every decision is fair. By actively altering some low-confidence actions in se-

quence generation to generate fairer sequences, we train the model on these data to make

fairer decisions, which is a model-agnostic approach. Furthermore, since sequential decisions

affect feature distributions, we argue that the gap between feature distributions of different

groups can be continuously narrowed in the long run by carefully choosing different deci-

sions. Inspired by [31], we impose the long-term fairness in a policy optimization algorithm

by adding a distribution distance penalty to the advantage function. We apply the proposed

method on three cases, bank loans, attention allocation and epidemic control, and achieve

good performance compared to other baselines.

1.4 Organization

The remaining of this dissertation is organized as follows.

In Chapter 2, we present a comprehensive related work on fairness-aware machine

learning. Specifically, we divide the related research into two parts according to the research

settings, namely, fair classification in static setting and fair classification in dynamic setting.

In Chapter 3, we introduce the uniform notations and some preliminary knowledge of struc-

tural causal models and fairness notions which play an important role in understanding and

facilitating follow-up chapters. Moreover, short and highly related work and preliminaries

are also introduced in subsequent chapters.

We present our main research work in Chapter 4 - Chapter 7. Chapter 4 proposes an

approach that learns multiple classifiers and achieves fairness for all of them simultaneously,

by treating each decision model as a soft intervention and inferring the post-intervention
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distributions to formulate the loss function as well as the fairness constraints. In Chapter

5, we propose a framework for achieving long-term fair sequential decision making, which

formulates as a constrained optimization problem with the utility as the objective and the

long-term and short-term fairness as constraints. We propose a framework based on deep

generative models to achieve long-term fairness by learning the mechanism of feature dis-

tribution shift and narrowing the data distributions of two groups through minimizing the

Wasserstein distance in Chapter 6. In Chapter 7, we study long-term fairness in reinforcement

learning. In the proposed algorithm, not only long-term fairness is achieved by regularizing

the advantage function, but also short-term fairness is achieved by modifying the training

data.

In Chapter 8, we conclude this dissertation and discuss the future work.
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2 Related Work

According to the fairness problem setting, we divide fairness-aware machine learning

into two categories: (1) fairness in static settings; (2) fairness in dynamic settings. Specifically,

we focus mainly on the fairness of classification problem. In this chapter, we review the related

literature on these two categories, and comprehensively introduce the related concepts and

technical routes of the existing work. Finally, we summarize the content of this chapter.

2.1 Fairness in Static Settings

In the literature, the algorithms for eliminating discrimination in static settings can

be divided into three types according to their roles in different stages of model training:

pre-processing, in-processing and post-processing.

For pre-processing algorithms [32, 33, 34, 35, 36], they process or transform raw data

to eliminate bias so that any model learned from those unbiased data will be fair. These

pre-processing methods can be applied by modifying non-sensitive features or labels, gener-

ating new unbiased data, or learning fair representations. In [34, 35], they processed data

through adversarial learning to eliminate discrimination in the data while maximizing the

preservation of information for future classification tasks. Specifically, Xu et al. [34] built

a fairness-aware generative adversarial networks with two discriminators, one to ensure the

similarity between the generated data and the original data, and another to ensure that the

generated data is discrimination-free. Different from the previous work, Madras et al. [35]

proposed a method that utilizes adversarial learning to learn a fair representation instead

of generating new data. To modify the raw data, Kamiran and Calders [37] designed two

methods: massaging, which changes labels of subjects from difference sensitive groups, and
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re-weighing, which assigns different weights to subjects, while Calmon et al. [36] formulated

the data transformation problem as an optimization problem to simultaneously achieve three

objectives: controlling discrimination, limiting distortion, and preserving utility. By solving

this optimization problem, a fair transformed dataset can be obtained. Pre-processing meth-

ods have the advantages of flexibility and model-agnosticism, which can be used for any

downstream models, without considering certain assumptions.

For in-processing algorithms [28, 38, 39, 40], they usually adjust the training proce-

dure of models, often by adding fairness constraints or training with advarsarial learning. Wu

et al [38] proposed a general framework using surrogate functions to integrate various fairness

metrics into the classical classification model to form a convex optimization problem with

fairness constraints. Zafar et al. [28] proposed a flexible approach to train fair margin-based

classifiers by minimizing the covariance between the users’ sensitive attribute and the signed

distance from the users’ feature vectors to the decision boundary. Adversarial learning can be

used not only in pre-processing methods, but also in in-processing methods. In [40], an ad-

versary network is added and takes the predictions of a classifier as input, which attempts to

predict the sensitive attributes. The gradient of the adversary is used to update the classifier

in order to reduce the sensitive information passed through the predicted labels. Compared

to other methods, in-processing methods can achieve good performance in both accuracy

and fairness, while obtaining a good trade-off between them by adjusting hyperparameters.

For post-processing algorithms [15, 41, 42, 43, 44], they meet the fairness constraint

by modifying the output scores. For example, Hardt et al. [15] suggested flipping certain

predicted labels to meet the fairness criteria of equal odds or equal opportunity. Kami-

ran et al. [41] proposed two solutions, called Reject Option based Classifier (ROC) and

Discrimination-Aware Ensemble (DAE), to modify the predictive labels close to the decision
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boundary. Williamson et al [44] showed that selecting instance-dependent thresholds can

obtain a good trade-off between accuracy and fairness. Mehrabi et al. [43] proposed using

attention mechanisms to learn the relationship between features and decisions, and reducing

unfairness by decreasing the attention weights of some features.

2.2 Fairness in Dynamic Settings

In the last decade, fairness in static settings has been extensively studied in the

literature. However, in reality most decision-making systems work in a dynamic environment,

and the distribution of data will change over time, which will affect the accuracy and fairness

of the decision-making system. Therefore, traditional methods in static settings are no longer

applicable in dynamic settings, which has inspired researchers to extend the fairness problem

to dynamic settings.

It has been first studied in a compound decision-making process called pipeline [45,

46]. In pipelines, individuals may drop out at any stage, and classification in subsequent

stages depends on the remaining cohort of individuals. For instance, hiring is at least a two-

stage model: deciding whom to be interviewed from the applicant pool and then deciding

whom to be hired from the interview pool. In addition to the pipeline, a more practical

and challenging dynamic setting considers that decisions made in the past can reshape the

data population and subsequently influence future decisions [47]. In this setting, several

studies have demonstrated the inadequacy of static fairness approaches in various application

scenarios, including credit lending [24], college admission [48], labor market [22]. In [49], the

authors propose to use causal directed acyclic graphs (DAGs) as a unifying framework to

study fairness in dynamical systems but have not reached any approach to achieve long-term

fairness.
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As another line of work, some research [48, 23, 50, 31, 51] studies long-term fairness

in the context of reinforcement learning, which is a natural framework to describe sequential

decision making problems and feedback dynamics. To understand the long-term impact of

deployed models, D’Amour et al. [48] first proposed to study the fairness of some algorithms

via simulation in which three cases, bank loans, attention of allocation and college admissions,

are formulated as Markov Decision Processes (MDPs), and found static or one-step analyses

do not give complete conclusions. Their public library builds an easy-to-used environment for

future research. As with in-processing methods, training reinforcement learning algorithms

with fairness constraints is an intuitive approach. Wen et al. [50] formulated the problem

as constrained MDPs and tried to achieve fairness by developing two algorithms, one of

which is a model-based algorithm solved by linear programming and the other one is model-

free algorithm based on cross-entropy method to train. Instead of adding explicit fairness

constraints, Yu et al. [31] recently designed a new method to impose fairness requirements

in policy gradient algorithms, which regularizes the advantage function by including fairness

penalties. And three case studies demonstrated the effectiveness of the proposed method.

In addition, Zhang el al. [23] studied the dynamics of group qualification rates which is

converted into a partially observed Markov decision problem. Their work show that static

fairness constraints can either benefit or damage the fairness.

2.3 Summary

A large body of literature has emerged in the past decade to address the issue of fair-

ness in static settings. In these works, many different definitions of fairness based on statistics

or causality are proposed. At the same time, according to these definitions of fairness, a large

number of algorithms are designed to eliminate discrimination and achieve fairness. These
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algorithms are generally divided into three types: pre-processing, in-processing, and post-

processing. Compared with fairness in static settings, the problem of fairness in dynamic

settings is more difficult and more challenging, which has led to it not get attention until

recent several years. Some preliminary work has been proposed to consider the dynamics of

sequential decision-making problems and effects of static fairness constraints on long-term

fairness. Some of the work is done within the framework of supervised learning, while oth-

ers focus on reinforcement learning. However, existing work does not yet have a suitable

definition for measuring long-term fairness. Moreover, there is no benchmark datasets or

methods to generate data for sequential decision-making problems and no consensus on how

to evaluate an algorithm.
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3 Preliminaries

In this chapter, we introduce the mathematical notations and some of the associated

background preliminaries for the whole dissertation. Firstly, some notations are presented

to describe variables, datasets, and distributions. Then we describe Peal’s structural causal

model framework which is the basis of our proposed algorithms. Finally, association-based

and causality-based fairness notions are provided as a basis for subsequent chapters.

3.1 Notations

For the unification of notations, we use the various notations summarized here through-

out the dissertation. We denote variables or features by uppercase letters and their values

by lowercase letters respectively, i.e., X and x. Similarly, the sets of variables or vectors

and their values are denoted by bold letters, i.e., X and x. Variables and vectors will be

used interchangeably unless otherwise specified. We represent datasets by D = {(Xi, Yi)}ni=1

randomly sampling from the joint distribution P (X, Y ), where Xi is the feature vector of

i-th instance and Yi is the output of i-th instance. When time is considered, the temporal

datasets are represented by D = {(Xi, Y i)}ti=1, where Xi is the i-th step feature vector and

Y i is the i-th step outputs.

3.2 Structural Causal Models

In our research, structural causal model (SCM) [29] is often used to analyze causality

between variables and to define causality based fairness. SCM is a mathematical framework

developed by Judea Pearl for modeling the causal mechanisms of a system as a set of struc-

tural equations which describe the data generation mechanism. The formal definition of SCM
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is as follows:

Definition 1 (Structural Causal Model). A structural causal model M is represented by a

quadruple ⟨U,V,F, P (U)⟩ where

1. U is a set of exogenous random variables that are determined by factors outside the

model.

2. P (U) is a joint probability distribution defined over U.

3. V is a set of endogenous variables that are determined by variables in U ∪V.

4. F is a set of structural equations from U∪V to V. Specifically, for each V ∈ V, there

is a function fV ∈ F mapping from U ∪ (V\V ) to V , i.e., v = fV (paV , uV ), where

paV and uV are realization of a set of endogenous variables PAV ∈ V \ V and a set of

exogenous variables UV respectively.

If all exogenous variables in U are assumed to be mutually independent, then the

causal model is called a Markovian model ; otherwise, it is called a semi-Markovian model.

Each causal modelM is associated with a causal graph G = ⟨V , E⟩ where V is a set of nodes

and E is a set of edges. Each node of V corresponds to a variable of V inM. Each edge in

E , denoted by a directed arrow →, points from a node Vi ∈ PAj to a different node Vj ∈ V,

which represents the direct causal relationship from Vi to Vj. In a causal graph, a path is

a sequence of directed edges and a directed path is a path whose edges point to the same

direction.

Throughout this dissertation, we only consider Markovian models and their asso-

ciated causal graphs are Directed Acyclic Graph (DAG) which means there are no cyclic

dependencies among the variables. In our causal graphs, all exogenous variables are omitted.
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Following factorization formula [52], the observable distribution derived from SCMM can

be decomposed into:

P (v) =
∑
u

∏
{i|Vi∈V}

P (vi | pai, ui)P (u), (3.1)

where every conditional probability P (vi | pai, ui) is governed by the corresponding structural

equation fi.

3.2.1 Intervention

The do-operation[29] is proposed to define the intervention in SCMs. Specifically, the

do-calculus introduces a new operation do(X = x) or do(x), which means the intervention

forces some variables X to take x. According to the form of x, the intervention can be

classified into hard intervention and soft intervention. This new operation also leads to a

new probability distribution, called the interventional distribution [53]:

Definition 2 (Interventional Distribution or Post-interventional Distribution). The inter-

ventional distribution P (y | do(x)) or P (Y(x)) denotes the distribution of variables y when

the variables X are forced to be set to x.

3.2.1.1 Hard Intervention

In a SCM, hard intervention do(x) is define as the substitution of equation x =

fX(paX,uX) with constant x. The hard intervention results in a new structural causal model,

which is referred as sub-model Mx. The causal graph GX̄ associated with Mx is the same

as G except that all edges incoming to nodes X are removed. After the hard intervention,

17



the sub-modelMx̄ induces a interventional distribution P (v | do(x)) using Eq. 3.1:

P (v | do(x)) =
∑
u

∏
{i|Vi∈V}

P (vi | pai, ui, do(x))P (u | do(x))

=
∑
u

∏
{i|Vi∈V\X}

P (vi | pai, ui)P (u).
(3.2)

which is also called the truncated factorization.

3.2.1.2 Soft Intervention

The soft intervention extends the hard intervention such that it forces variables X to

take functional relationship g(z) in responding to some other variables Z, which is denoted

by σ [54]. The soft intervention substitutes equation x = fX(paX,uX) with a new function

x = g(z). The soft intervention results in a new modelMσX with a causal graph GσX where

a node σXi
for every Xi ∈ X and an edge σXi

→ Xi are added. Similar to hard intervention,

the causal modelMσX also induces a interventional distribution P (v;σX) or P (v(σX)) using

Eq. 3.1:

P (v;σX) =
∑
u∗

∏
{i|Vi∈V}

P (vi | pai, ui;σx)P (u∗ | σx)

=
∑
u∗

∏
{i|Vi∈V\X}

P (vi | pai, ui)P (u)
∏

{i|Vi∈X}

P (vi | pai, ui;σX)P (u∗\u;σX).
(3.3)

where U∗ is the set of all exogenous variables.

3.2.2 Causal Effects

After defining interventions, we can now compute the causal effects, which is the main

task of causal inference. Causal effects permit us to predict how systems would respond to a
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hypothetical intervention. For the total causal effect of X on Y , it represents the effect of a

intervention transmitted along all causal paths from cause X to effect Y, which is as follows:

Definition 3 (Total Causal Effect). The total causal effect TE(x1, x0) of X on Y measures

the causal effect of changing cause X from x0 to x1 on effect Y transmitted along all causal

paths:

TE(x1, x0) = P (y | do(x1))− P (y | do(x0)).

Moreover, when we specify the causal effect of X on Y as the effect of a intervention

transmitted along a certain subset of all causal paths from X to Y , the causal effect is

referred to as path-specific effect [55]:

Definition 4 (Path-specific Effect). Given a causal path set π, the path-specific effect PE(x1, x0)

of X on Y measures the causal effect of changing cause X from x0 to x1 on effect Y trans-

mitted along the path set π:

PE(x1, x0) = P (y | do(x1|π), do(x0|π̄))− P (y | do(x0)),

where P (y | do(x1|π), do(x0|π̄)) represents the interventional distribution of Y where the ef-

fect of intervention do(x1) is transmitted along π while the effect of intervention do(x0) is

transmitted along other paths.

Depending on the choice of path set π, the path-specific effect can be divided into

direct causal effect and indirect causal effect. If path set π only contains the direct path from

X to Y , i.e., X → Y , then the path-specific effect is called the direct causal effect. If path

set π contains some paths other than X → Y , the path-specific effect is called the indirect

causal effect. In later chapters, these concepts will be defined and used more specifically.
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3.3 Fairness Notions

Broadly, the goal of fair machine learning is to make fair decisions without any preju-

dice or favoritism towards an individual or a group based on their intrinsic or acquired traits

[20]. In order to fight against discrimination and achieve fairness, a number of association-

based and causality-based fairness notions have been proposed to measure how fair an algo-

rithm is. Specifically, the binary sensitive attribute S is used to indicate the unprotected and

protected groups, i.e., S = {s+, s−}. The decision attribute is also a binary variable denoted

by Y = {y+, y−}.

3.3.1 Association-Based Fairness

In this dissertation, association-based fairness algorithms are often used as baselines

to compare with our algorithms. In this part, we introduce three commonly used association-

based fairness notions: demographic parity [56, 57], equal opportunity and equal odds [15].

More association-based fairness notions could be found in [20, 1].

Definition 5 (Demographic Parity). Given a sensitive feature S and a prediction Ŷ , the

prediction Ŷ is considered fair with respect to S if P (Ŷ = y+|S = s+) = P (Ŷ = y+|S = s−).

Definition 6 (Equal Opportunity). Given an observational data S,X, Y and a prediction

Ŷ , the prediction Ŷ is considered to satisfy the equal opportunity with respect to S and Y if

P (Ŷ +|S+, Y +) = P (Ŷ +|S−, Y +).

Definition 7 (Equal Odds). Given an observational data S,X, Y and a prediction Ŷ , the

prediction Ŷ is considered to satisfy the equal odds with respect to S and Y if P (Ŷ +|S+, Y +) =

P (Ŷ +|S−, Y +) and P (Ŷ +|S+, Y −) = P (Ŷ +|S−, Y −).
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3.3.2 Causality-Based Fairness

Compared with association-based fairness notions, causality-based fairness notions

consider more knowledge of the data generation mechanism, depicted by a causal graph. In

the perspective of causality, discrimination can be viewed as the causal effects of sensitive

attribute S on decision attribute Y . Based on the paths through which S affects Y , various

causality-based fairness notions have been proposed. Here we only introduce several notions

used in the dissertation, others can be found in [19, 58].

Definition 8 (Total Causal Fairness). Given the sensitive attribute S and decision attribute

Y , the total causal fairness is achieved if

TE(s+, s−) = P (y|do(s+))− P (y|do(s−)) = 0.

Definition 9 (Path-Specific Causal Fairness). Given the sensitive attribute S and decision

attribute Y , and a causal path set π that contains some paths from S to Y , the path-specific

causal fairness is achieved if

PE(s+, s−) = P (y | do(s+π ), do(s−π̄ ))− P (y | do(s−)) = 0.

Specifically, if π contains only direct causal path S → Y , it is called direct causal fairness,

and if π contains only indirect causal path from S to Y through redlining/proxy attributes,

it is called indirect causal fairness.
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4 Fair Multiple Decision Making Through Soft Interventions

4.1 Introduction

Algorithmic decision making models have been widely adopted in various domains to

make important decisions, like hiring employees, granting loans, assessing recidivism risks,

etc. Traditional learning algorithms are designed to maximize the prediction accuracy. Thus,

they may produce biased decision models by inheriting and reinforcing discrimination in the

training data [32], and/or introducing additional discrimination during the learning process

[15]. How to ensure fairness in algorithmic decision making models is an important task

in machine learning [32, 15]. Over the past years, many researchers have been devoted to

the design of fair classification algorithms with respect to a pre-defined protected attribute,

such as race or sex, and a decision task/model, such as hiring [57, 33, 59]. In particular,

one line of the work is to incorporate fairness constraints into classic learning algorithms to

build fair classifiers from potentially biased data [28, 60, 38, 61, 62, 63]. Most of previous

research generally focuses on a single decision model. However, in reality there usually exist

multiple decision models within a system and all of which may contain a certain amount

of discrimination, either introduced by themselves or transmitted from upstream models.

As a motivating example, consider two decision tasks Y1, Y2 where Y1 is used by the city

government to allocate policing resources to different locations and Y2 is used by a local

bank to make personal loan decisions. Due to historically segregated housing, neighborhood

racial composition differs based on geographic locations, and there can exist direct racial

discrimination in Y1 as well. Thus, certain locations will be allocated more police resources

than others, resulting in larger numbers of criminal arrest records. As a result, when the
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criminal arrest record is used in Y2, certain racial group will receive unfair disadvantage in

getting loans.

Ideally we would like to build fair models for all decision making tasks. However, if

decision models influence one another, it is not a straightforward problem even if we know

how to build a fair model for each task. This is because the data distribution can change as

a consequence of deploying new models. If we build the model for each task independently

using static training datasets, the learning process of each model is based on the fixed

distribution given in the training data. However, deploying new fair models would change

the distributions of attribute variables that are affected by their decisions as well as the

discrimination that is passing down. As a result, the subsequent models built on the original

distribution may not perform well in terms of both accuracy and fairness. On the other hand,

if we build fair models one by one following a temporal sequential order, each time deploying

a model and collecting the output data before building the next one, then the time needed

for building all models may not be acceptable for some applications.

In this chapter, we propose an approach that learns multiple fair classifiers simul-

taneously and only requires a static training dataset. The core idea is to leverage Pearl’s

structural causal model (SCM) [29], treat each decision model as a soft intervention and

infer the post-intervention distributions to formulate the loss function as well as the fairness

constraints. The SCM is widely adopted in fair classification research for defining fairness

as the causal effect of the protected attribute on the decision [64, 65, 66, 16, 67, 68, 18].

Causal inference in the SCM is often facilitated with the “(hard) intervention” that forces

some variable X to take certain constant x, denoted by do(X = x) [29]. “Soft intervention”

[69, 54], also known as the “conditional action” [29], extends the hard intervention such

that variable X is forced to take a specified functional relationship g(z) in responding to
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some set Z of other variables, denoted by do(X = g(z)). In our approach, the deploying of

new decision models is considered as to perform soft interventions on the decisions, whose

influence can be inferred as the post-intervention distributions. By quantifying fairness as

causal effects of the protected attribute on all decisions, under the hard intervention on the

protected attribute and soft interventions on decisions, we formulate fair classification for

multiple decisions as a single constrained optimization problem.

Combining multiple decision models together makes the optimization challenging to

solve. Similarly to [38], we adopt surrogate functions to smooth the loss function and con-

straints. However, the difference in our problem is that, each decision model is associated

with a surrogate function, and the surrogated protections are used in downstream decision

models, resulting non-linear combinations of multiple surrogate functions. As a result, our

loss function is different from traditional surrogated loss functions whose excess risks have

been analyzed and bounded in [70]. To investigate the excess risk of our loss function, we

adopt theoretical tools in [70] and show that nontrivial upper bounds exist on the excess

risk in a form that is the same as that for traditional surrogated loss functions given in [70],

irrespective of the number of decision models involved.

Contributions. To the best of our knowledge, this is the first work to study fair

multiple decision making where the feature distribution may change due to the deployment

of decision models. Our approach provides a general way to incorporate fairness constraints

into the generic classification formulation such that we can readily employ off-the-shelf clas-

sification models and optimization algorithms. The causal inference allows us to train all

decision models jointly from a single dataset. Since our approach is based on the SCM, all

SCM-based fairness notions, including the total effect [65], direct and indirect discrimination

[64, 65, 66], counterfactual fairness [16, 67, 68], and PC-fairness [18], can be naturally applied
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to our problem formulation. The theoretical results imply that we don’t need to worry about

additional losses caused by multiple surrogate functions. By conducting experiments on both

synthetic and real-world datasets, we show that our approach consistently outperforms the

approach which builds fair classifiers for each decision separately.

4.2 Fair Classification

Following the notations used in [38], the problem of fair classification is to learn

a mapping f : X 7→ Y parameterized with θ, where X is a set of input attributes and

Y = {0, 1} is the class label. The learning algorithm aims to minimize the classification error

EX,Y [1f(x)̸=y], where 1A is the indicator function, i.e., 1A = 1 if A is true and 1A = 0 if

A is false. Usually, f is defined based on another function h that is performed in the real

number domain, i.e., h : X 7→ R and f(x) = 1h(x)≥0. Thus, the classification error can be

reformulated as

R(h) = EX

[
P (Y = 1|x)1h(x)<0 + P (Y = 0|x)1h(x)≥0

]
. (4.1)

By using surrogate functions ϕ(·) to smooth and bound the indicator function (i.e., the 0-1

loss), we obtain the ϕ-loss as:

Rϕ(h) = EX [P (Y = 1|x)ϕ(h(x)) + (1− P (Y = 1|x))ϕ(−h(x))] ,
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and the optimization problem as minh∈HRϕ(h). Similarly fair classification can be formulated

as a constrained optimization problem

min
h∈H

Rϕ(h) s.t. − τ ≤ Tϕ(h) ≤ τ, (4.2)

where Tϕ(h) is a measure of ϕ-unfairness depending on the particular fairness notion used

which is also smoothed by using surrogate functions. Widely used surrogate functions include

the hinges loss, square loss, logistic loss, exponential loss, etc.

4.3 Formulating Fair Classification for Making Multiple Decisions

In this section, we formally formulate the fair classification problem for making mul-

tiple decisions. Consider a protected attribute S, a set of non-protected attributes X =

{X1, · · · , Xm} and a set of decisions Y = {Y1, · · · , Yl}. For ease of representation, we as-

sume that the protected attribute and all decisions are binary, i.e., S = {s−, s+} with s−

denoting the protected group and s+ denoting the non-protected group, and Yk = {y−, y+}

for each Yk ∈ Y with y− denoting the negative decision (i.e., Yk = 0) and y+ denoting

the positive decision (i.e., Yk = 1). Often we abbreviate expressions Yk = y−, y+ as y−k , y
+
k .

Note that decisions can be interdependent such that later decisions may depend on the con-

sequences of earlier decisions either directly and/or indirectly through the change of some

features that is mediated between the two decisions. In real situations, such indirect influ-

ence may need time to take effect and cannot be observed within a short period of time.

Therefore, we only assume that a historical dataset D = {(s(i),x(i),y(i))}Ni=1 that reflects the

original decision making mechanisms is observed.

Our task is to build a classifier hk for each decision Yk from training data D. Classifier
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hk takes some profile attributes Zk ⊆ {S} ∪ X as the input to make the prediction as

1hk(zk)≥0. We would like to ensure that any classifier is fair if all classifiers are deployed, with

the fairness of all classifiers being measured using the same fairness notion. In this chapter,

for simplicity we consider total effect [65] as the fairness notion which is defined based on

the total causal effect as follows. Nevertheless, our formulation can be easily extended to

other causal-based fairness notions as long as they can be identified and computed with

expressions of observational distributions.

Definition 10. For the classifier built for each decision Yk, it is considered to be fair if

−τ ≤ P ∗(y+k |do(s
+))− P ∗(y+k |do(s

−)) ≤ τ

where τ is a user-defined threshold and P ∗ is the distribution after all classifiers are deployed.

As shown in [38], the formulation of fair classification consists of a loss function for

quantifying the classification error and a number of constraints for enforcing fairness. For

the case of a single decision model, the loss function can be directly computed from D,

and fairness constraints can be computed from D as well after performing hard intervention

do(s). However, for the case of multiple decision models, due to the change in the data

distribution made by model deployment, the loss function and fairness constraints should

not be computed from D but P ∗ which may be different from the distribution followed by

D. Therefore, we propose to adopt the soft intervention to model all model deployments and

infer post-intervention distributions.

To this end, we build a causal graph G to represent the causal structure of the under-

lying data generation mechanism from dataset D. The research of causal structure discovery

is quite active in recent years and many algorithms have been proposed [71]. Given the
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causal graph, we capture the deployment of classifier hk(zk) as a soft intervention that forces

the prediction of decision Yk to take functional relationship hk(zk), denoted as do(hk). Con-

sequently, distribution P ∗ after the deployment of all classifiers can be captured by the

post-intervention distribution after performing soft interventions do(h1, · · · , hl). Then, the

classification error of hk(zk) after the deployment of classifiers could be measured similarly

to Eq. (4.1) as given by

R(hk) = E
Zk|do(h1,··· ,hl)

[
P (y+k |zk)1hk(zk)<0 + P (y−k |zk)1hk(zk)≥0

]
, (4.3)

where the expectation is computed on the post-intervention distribution of Zk. Similarly, the

fairness constraints of hk(zk) is given by the total effect

T (hk) = P (y+k |do(s
+, h1, · · · , hl))− P (y+k |do(s

−, h1, · · · , hl)), (4.4)

which is based on the post-intervention distributions of Yk after performing both hard in-

tervention do(s) and soft interventions do(h1, · · · , hl). We use Yk to denote both decision

label and predicted decision, and use soft intervention to distinguish between them: if the

distribution is pre-interventional such as P (y+k |zk), Yk is the label; if the distribution is

post-interventional such as P (y+k |do(s+, h1, · · · , hl)), Yk is the prediction.

Take the toy model given in the introduction as an example, where there are two

decisions Y1 and Y2 representing the policing resource allocation and bank loan decision

respectively. We treat race as the protected attribute, denoted by S. We denote the location

of the residential area as X1, and denote the number of criminal arrest records in each area as

X2. The causal graph of this toy model is shown in Figure 4.1. We would like to build two fair
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S

X2

Y1 Y2

Figure 4.1: Causal graph of toy model.

classifiers h1(x1) and h2(x2) for predicting Y1 and Y2. Note that the inputs of classifiers could

be different from the original parents of Y1 and Y2, which are {S,X1} and X2 respectively.

Their loss functions are given by R(h1), R(h2), and fair constraints are given by T (h1), T (h2).

Next, we need to derive R(hk) and T (hk), which are given on the post-intervention

distribution, as smooth expressions on D, which is the observational data. By using surrogate

functions ϕ(·) to smooth and bound the indicator function, we finally derive the formulas of

Rϕ(hk) and Tϕ(hk) that will be used in our formulation of fair multi-decision learning.

4.3.1 Deriving Loss Function and Fair Constraints

In the above example, the learning of classifier h1 could be done by solving an ordinary

fair classification problem. However, when learning classifier h2, both its loss and fairness

are affected by classifier h1, and in this case the effect is transmitted indirectly through X2.

To accurately measure the loss and fairness of h2, we need to mathematically express the

effect of h1 as post-intervention distributions. Thus, we apply following three properties of

the (soft) intervention to compute post-intervention distributions from observational data.

(1) An intervention on a variable V would not change the distribution of V ’s non-descendant.

(2) An intervention on V would not change the generation mechanism of another variable

W , i.e., distribution P (w|paW ) would not be changed.
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(3) A soft intervention on V would change its conditional distribution P (v|paV ) according

to the defined functional relationship.

Next we show how the properties work in the toy example. Note that R(h2) is

given by EX2|do(h1,h2)
[
P (y+2 |x2)1h2(x2)<0 + P (y−2 |x2)1h2(x2)≥0

]
, which by definition is equal

to
∑

X2
P (x2|do(h1, h2))

[
P (y+2 |x2)1h2(x2)<0 + P (y−2 |x2)1h2(x2)≥0

]
. Due to Property (1),

P (x2|do(h1, h2)) = P (x2|do(h1)), which can be broken down by conditioning on X1, Y1 as∑
X1,Y1

P (x2|do(h1), x1, y1)P (x1, y1|do(h1)). Due to Property (2), we have that P (x2|do(h1), x1, y1)

= P (x2|x1, y1). Meanwhile, we rewrite P (x1, y1|do(h1)) as P (x1|do(h1))P (y1|do(h1), x1) which

is equal to P (x1)P (y1|do(h1), x1). Then, we further break down P (y1|do(h1), x1) as∑
S P (y1|do(h1), s, x1)P (s|do(h1), x1). Due to Property (1), we have P (s|do(h1), x1) = P (s|x1).

Due to Property (3), we have P (y1|do(h1), s, x1) be equal to a new distribution Ph1(y1|x1)

defined by function h1, which is given by 1h1(x1)≥0 if y1 = y+1 and 1h1(x1)<0 if y1 = y−1 in our

case. Finally, combining every components above together and using a surrogate function ϕ

to replace each indicator, we obtain that

Rϕ(h2) =
∑

S,X1,X2

P (s, x1)
(
ϕ(h2(x2))ϕ(−h1(x1))P (y+2 |x2)P (x2|x1, y+1 )

+ϕ(h2(x2))ϕ(h1(x1))P (y
+
2 |x2)P (x2|x1, y−1 )

+ϕ(−h2(x2))ϕ(−h1(x1))P (y−2 |x2)P (x2|x1, y+1 )

+ϕ(−h2(x2))ϕ(h1(x1))P (y−2 |x2)P (x2|x1, y−1 )
)
.

For T (h2), it is given by P (y+1 |do(s+, h1, h2)) − P (y+1 |do(s−, h1, h2)), which can be

directly rewritten as P (y+1 |do(s+, h1)) + P (y−1 |do(s−, h1)) − 1. By similarly applying the
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three properties, we could obtain that

Tϕ(h2) =
∑
X1,X2

(
ϕ(−h2(x2))ϕ(−h1(x1))P (x1|s+)P (x2|x1, y+1 )

+ϕ(−h2(x2))ϕ(h1(x1))P (x1|s+)P (x2|x1, y−1 )

+ϕ(h2(x2))ϕ(−h1(x1))P (x1|s−)P (x2|x1, y+1 )

+ϕ(h2(x2))ϕ(h1(x1))P (x1|s−)P (x2|x1, y−1 )
)
− 1.

More generally, when there are l classifiers, we could deriveRϕ(hk) and Tϕ(hk) by using

the factorization formula proposed in [69] which implicitly encode all three properties. For

Rϕ(hk), according to the factorization formula, post-intervention P (zk|do(h1), · · · , do(hl)) is

given by

P (zk|do(h1, · · · , hl)) =
∑

X\Zk,Y

l∏
i=1

Phi(yi|zi)
m∏
i=1

P (xi|paXi
), (4.5)

where Phi(yi|zi) is the distribution of Yi defined by classifier hi(zi), i.e., 1hi(zi)≥0 if yi = y+

and 1hi(zi)<0 if yi = y−. For the sake of simple representation, we assume that S has no

parent in the causal graph. Note that all terms in Eq. (4.5) can be computed from data.

Then, we can derive the formula for computing Rϕ(hk).

However, it may not be ideal to directly apply Eq. (4.5) to our problem formulation.

First, some computations in Eq. (4.5) are not necessary since Zk should not be affected

by interventions on the non-ancestors of Yk. More importantly, if any Xi is a continuous

variable, its corresponding summation in Eq. (4.5) would become an integral, making the

gradient difficult to compute. Thus, to further simplify Eq. (4.5), we index all attributes in

X and Y according to the topological ordering, and denote the subsets of X and Y that
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are prior to Yi (or Xi) in the topological order as X′
Yi

and Y′
Yi

(X′
Xi

and Y′
Xi
). Then, by

canceling out all terms that are after Yk in the order, it follows that

P (zk|do(h1, · · · , hl))

=
∑

{S,X′
Yk

}\Zk,Y
′
Yk

P (s)
∏

Yi∈Y′
Yk

Phi(yi|zi)
∏

Xi∈X′
Yk

P (xi|paXi
)

=
∑

{S,X′
Yk

}\Zk,Y
′
Yk

P (s)
∏

Yi∈Y′
Yk
,y+i

1hi(zi)≥0

∏
Yi∈Y′

Yk
,y−i

1hi(zi)<0

∏
Xi∈X′

Yk

P (xi|paXi
).

(4.6)

We can rewrite P (s)
∏

Xi∈X′
Yk

P (xi|paXi
) as

P (s)
∏

Xi∈X′
Yk

P (xi|s,x′
Xi
,y′

Xi
)

=P (s)
∏

Xi∈X′
Yk

P (xi|s,x′
Xi
)
P (y′

Xi
|s, xi,x′

Xi
)

P (y′
Xi
|s,x′

Xi
)

=P (s,x′
Xi
)
∏

Xi∈X′
Yk

P (y′
Xi
|s, xi,x′

Xi
)

P (y′
Xi
|s,x′

Xi
)
.

Thus, we can rewrite Eq. (4.6) as an expectation over S,X′
Yk
. With the surrogate function

we obtain

Rϕ(hk) = E
S,X′

Yk

P (y+k |zk)ϕ(hk(zk))∑
Y′

Yk

∏
Yi∈Y′

Yk
,y+i

ϕ(−hi(zi))
∏

Yi∈Y′
Yk
,y−i

ϕ(hi(zi))

∏
Xi∈X′

Yk

P (y′
Xi
|s, xi,x′

Xi
)

P (y′
Xi
|s,x′

Xi
)

+ P (y−k |zk)ϕ(−hk(zk))
∑
Y′

Yk

∏
Yi∈Y′

Yk
,y+i

ϕ(−hi(zi))

∏
Yi∈Y′

Yk
,y−i

ϕ(hi(zi))
∏

Xi∈X′
Yk

P (y′
Xi
|s, xi,x′

Xi
)

P (y′
Xi
|s,x′

Xi
)

 .
(4.7)
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We can see that, in Eq. (4.7), only probabilities of categorical decisions are involved,

and the expectation can be estimated as an empirical risk.

Similarly, for T (hk), Eq. (4.4) can be directly rewritten as T (hk) =

P (y+k |do(s+, h1, · · · , hl)) + P (y−k |do(s−, h1, · · · , hl)) − 1, and P (y+k |do(s, h1, · · · , hl)) can be

given by

E
X′

Yk
|S=s

1hk(zk)>0

∑
Y′

Yk

∏
Yi∈Y′

Yk
,y+i

1hi(zi)>0

∏
Yi∈Y′

Yk
,y−i

1hi(zi)<0

∏
Xi∈X′

Yk

P (y′
Xi
|s, xi,x′

Xi
)

P (y′
Xi
|s,x′

Xi
)

 .
By applying surrogate function ϕ, we obtain that

Tϕ(hk) =

E
X′

Yk
|S=s+

ϕ(−hk(zk))∑
Y′

Yk

∏
Yi∈Y′

Yk
,y+i

ϕ(−hi(zi))
∏

Yi∈Y′
Yk
,y−i

ϕ(hi(zi))
∏
Xi∈X

P (y′
Xi
|s+, xi,x′

Xi
)

P (y′
Xi
|s+,x′

Xi
)

+

E
X′

Yk
|S=s−

ϕ(hk(zk))∑
Y′

Yk

∏
Yi∈Y′

Yk
,y+i

ϕ(−hi(zi))
∏

Yi∈Y′
Yk
,y−i

ϕ(hi(zi))
∏
Xi∈X

P (y′
Xi
|s−, xi,x′

Xi
)

P (y′
Xi
|s−,x′

Xi
)

− 1.

(4.8)

4.3.2 Problem Formulation

Now we are ready to formulate the classification problem. For each classifier hk(zk),

we derive its ϕ-loss Rϕ(hk) and ϕ-unfairness Tϕ(hk). Then, we minimize the summation of the

ϕ-loss over all classifiers. Meanwhile, given a fairness threshold τk, we want the ϕ-unfairness

to be bounded within the range [−τk, τk], so we require that −τk ≤ Tϕ(hk) ≤ τk. Generally,

large thresholds indicate loose fairness requirements and small ones indicate strict fairness

requirements. However, due to the application of surrogate functions, τk may not be equal to

threshold τ that is placed on the original fairness metric (e.g., 0.05 on the total effect used
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in the literature). In practice, we need to test different values of τk in order to find a good

balance between fairness and accuracy.

Problem Formulation 1. The problem of fair multiple decision making for Y = {Y1, · · · , Yl}

is formulated as the following constrained optimization problem:

min
h1,··· ,hl∈H

l∑
k=1

Rϕ(hk) s.t. ∀k, −τk ≤ Tϕ(hk) ≤ τk.

where the formulas of Rϕ(hk) and Tϕ(hk) are shown in Eqs. (4.7) and (4.8), respectively.

From Section 4.3.1 we see that both the loss function and constraints in this for-

mulation involve non-linear combinations of surrogate functions. Specifically, for each Yk,

surrogate functions of Yi that are ancestors of Yk are involved as multiplications. In essence,

this is because the surrogated predictions of one classifier are used in computing the loss of

downstream classifiers. As each surrogate function is involved as a single term in the multi-

plication in Eqs. (4.7) and (4.8), the gradients of Rϕ(hk) and Tϕ(hk) can be easily computed.

However, it is important to know whether such “passing down” process would accumulate

surrogate errors and affect the accuracy of classification. We analyze the risk bound of the

optimization in the next subsection. s

4.3.3 Excess Risk Bound

Our main result of the excess risk bound is on the unconstrained optimization of the

loss function. We show that for each classifier hk, ϕ-loss Rϕ(hk) approaching its unconstrained

optimum R∗
ϕ indicates that classification error R(hk) also approaching its unconstrained

optimum R∗, no matter how many classifiers are involved in the formulation. Although this

result does not directly give the risk bound to our constrained optimization problem, it can
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be easily extended to the constrained situation if we treat the constraints as penalty terms

that are to be added to the loss function.

We first formally define R∗ and R∗
ϕ, which are optimums of R(hk) and Rϕ(hk) over

all possible classifiers. By replacing each hi(zi) in R(hk) and Rϕ(hk) with a real-valued

variable αi, we define that R∗ = inf∀i,αi∈RR(hk) and R∗
ϕ = inf∀i,αi∈RRϕ(hk). Then, we

define the generic ϕ-conditional risk Cη
ϕ(α), optimal ϕ-conditional risk Hϕ(η), constrained

optimal ϕ-conditional risk H−
ϕ (η), and ψ-transform. All these definitions are consistent to

those in [70]. Let η be a value in [0, 1], η̄ = 1 − η, α be an arbitrary real value, and ϕ

be a surrogate function, we define that Cη
ϕ(α) = ηϕ(α) + η̄ϕ(−α), Hϕ(η) = infα∈RC

η
ϕ(α),

H−
ϕ (η) = infα:α(2η−1)≤0C

η
ϕ(α). As in [70], we require ϕ to be classification-calibrated, i.e., for

any η ̸= 1/2,H−
ϕ (η) > Hϕ(η). We then define ψ by ψ = ψ̃∗∗ where ψ̃(γ) = H−

ϕ (
1+γ
2
)−Hϕ(

1+γ
2
)

and g∗∗ is the Fenchel–Legendre biconjugate of g. We show that, by without loss of generality

assuming that ϕ(0) = 1 and infα∈R ϕ(α) = 0, we can obtain a risk bound for hk that is the

same as that for the single decision model optimization [70], as given in the following theorem.

Theorem 1. For any classification-calibrated surrogate function ϕ satisfying ϕ(0) = 1 and

infα∈R ϕ(α) = 0, any measurable function hk for predicting Yk, we have

ψ(R(hk)−R∗) ≤ Rϕ(hk)−R∗
ϕ,

where ψ(δ) is a non-decreasing function mapping from [0, 1] to [0,∞).

Lemma 1. For ψ, Hϕ and H−
ϕ , they have following properties.

1. For λ ∈ [0, 1] and γ ∈ R, ψ(λγ) ≤ λψ(γ).

2. H−
ϕ (η) ≥ Hϕ(η) for η ∈ [0, 1].
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3. η ≤ Hϕ(η) for η ∈ [0, 1/2].

4. η ≤ 1 ≤ H−
ϕ (η) for η ∈ [0, 1].

Proof. Parts 1,2,3 are proved in [70]. For Part 4, note thatHϕ is concave and symmetric about

1/2, meaning that it gets its minimum at η = 0, 1 and maximum at η = 1/2 [70]. We have

Hϕ(0) = Hϕ(1) = infα∈R ϕ(α) = 0. Meanwhile, we haveHϕ(1/2) = 1/2·infα∈R(ϕ(α)+ϕ(−α)).

Due to the convexity and symmetry between ϕ(α) and ϕ(−α), we can see that Hϕ(1/2) =

ϕ(0) = 1. Then, since Hϕ is concave, we have ηHϕ(1/2) + η̄Hϕ(0) ≤ Hϕ(η/2 + η̄ · 0), which

leads to η ≤ Hϕ(η/2) ≤ Hϕ(η) for η ∈ [0, 1/2].

For Part 5, note that H−
ϕ is concave on [0, 1/2] and on [1/2, 1] and also symmetric

about 1/2 [70]. Since H−
ϕ (1/2) = Hϕ(1/2) = 1 and H−

ϕ (0) = H−
ϕ (1) = infα≤0 ϕ(α) = ϕ(0) =

1, we have H−
ϕ (η) ≥ 1 ≥ η.

Next, we first prove Theorem 1 based on the toy example in the main paper, and

then explain how this proof can be extended to general situations.

4.3.3.1 Proof of Theorem 1 Based on Toy Example

Proof of Theorem 1. The causal graph of the toy example is shown in Fig. 4.1. In the exam-

ple, we have two classifiers h1, h2. Note that Rϕ(h1) is the same as that of a single decision

model, so we focus on Rϕ(h2). Denoting Z = {S,X1, X2}, we define

c1(z) =
P (y+1 |s, x1, x2)
P (y+1 |s, x1)

+
P (y−1 |s, x1, x2)
P (y−1 |s, x1)

,

and define

η1(z) =
P (y−1 |s, x1, x2)

c1(z)
, η2(z) = P (y+2 |x2),
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and

η̄1(z) = 1− η1(z), η̄2(z) = 1− η2(z),

For simplifying representation, in the remaining of this file we omit (z) in all expressions.

Note that

Rϕ(h2) = E
z
[c1 (η1η2ϕ(h1(x1))ϕ(h2(x2)) + η̄1η2ϕ(−h1(x1))ϕ(h2(x2))

+η1η̄2ϕ(h1(x1))ϕ(−h2(x2)) + η̄1η̄2ϕ(−h1(x1))ϕ(−h2(x2)))]

= E
z
[c1(η1ϕ(h1(x1)) + η̄1ϕ(−h1(x1) > 0))(η2ϕ(h2(x2)) + η̄2ϕ(−h2(x2)))]

= E
z

[
c1C

η1
ϕ (h1(x1))C

η2
ϕ (h2(x2))

]
,

we can express Rϕ(h2) using the generic ϕ-conditional risk C
η
ϕ(α). According to the definition

of R∗
ϕ, we correspondingly have

R∗
ϕ = E

z
[c1Hϕ(η1)Hϕ(η2)] .

Similarly we can also express R(h2) and R
∗ as

R(h2) = E
z
[c1C

η1(h1(x1))C
η2(h2(x2))] ,

R∗ = E
z
[c1H(η1)H(η2)],

where Cη(α) and H(η) are defined by replacing ϕ with 1 in Cη
ϕ(α) and Hϕ(η). Note that

H(η) is always obtained when the sign of α is the same as the sign of η − 1/2.
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Denote by α∗ the signs of solutions {sign(η1 − 1/2), sign(η2 − 1/2)}. Then, we have

R(h2)−R∗ = E
z
[c1 (C

η1(h1(x1))C
η2(h2(x2))−H(η1)H(η2))]

= E
z
[c11(sign(h) ̸= α∗) (Cη1(h1(x1))C

η2(h2(x2))−H(η1)H(η2))] .

Since ψ is convex [70], it follows that

ψ(R(h2)−R∗) ≤ E
z
[c11(sign(h) ̸= α∗)ψ (Cη1(h1(x1))C

η2(h2(x2))−H(η1)H(η2))] .

Without loss of generality, assume η1 ≤ η̄1 and η2 ≤ η̄2. Thus, according to the

definition, H(η1) = η1 and H(η2) = η2. Then, we want to show that for any h1, h2 whose

signs are not equivalent to α∗, we have

ψ (Cη1(h1(x1))C
η2(h2(x2))−H(η1)H(η2)) ≤ H−

ϕ (η1)H
−
ϕ (η2)−Hϕ(η1)Hϕ(η2). (4.9)

To this end, we consider two cases: (1) only one classifier from h1, h2 makes the prediction

that is opposite to α∗; and (2) both h1, h2 make predictions that are opposite to α∗.

For Case (1), assume that h1 makes the opposite prediction. Thus, Cη1(h1(x1)) = η̄1,

and Cη2(h2(x2)) = η2. Then, we have

ψ (Cη1(h1(x1))C
η2(h2(x2))−H(η1)H(η2)) = ψ ((η̄1 − η1)η2) .

Based on Lemma 1, Part 1, it follows that

ψ ((η̄1 − η1)η2) ≤ η2ψ (η̄1 − η1) = η2
(
H−
ϕ (η1)−Hϕ(η1)

)
.
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Based on Lemma 1, Part 3, we have η2 ≤ Hϕ(η2). So it follows that

ψ ((η̄1 − η1)η2) ≤
(
H−
ϕ (η1)−Hϕ(η1)

)
Hϕ(η2).

Based on Lemma 1, Part 2, we prove Eq. (4.9).

For Case (2), we have Cη1(h1(x1)) = η̄1, and C
η2(h2(x2)) = η̄2. Thus,

ψ (Cη1(h1(x1))C
η2(h2(x2))−H(η1)H(η2)) = ψ (η̄1η̄2 − η1η2) .

Without loss of generality, assume η1 ≤ η2, i.e., η̄2 ≤ η̄1. We have that

η̄1η̄2 − η1η2 = η̄1η̄2 − η1η2 − η1η̄2 + η1η̄2

= η̄2(η̄1 − η1) + η1(η̄2 − η2)

≤ η̄1(η̄1 − η1) + η1(η̄2 − η2).

(4.10)

Since ψ is convex, we have

ψ (η̄1η̄2 − η1η2) ≤ ψ (η̄1(η̄1 − η1) + η1(η̄2 − η2))

≤ η̄1ψ(η̄1 − η1) + η1ψ(η̄2 − η2).

According to the definition of ψ, we have ψ(η̄ − η) = H−
ϕ (η)−Hϕ(η). According to Lemma

1, Parts 4&3, we have η̄1 ≤ 1 ≤ H−
ϕ (η2), η1 ≤ Hϕ(η1). As a result, we have

ψ (η̄1η̄2 − η1η2) ≤ H−
ϕ (η2)

(
H−
ϕ (η1)−Hϕ(η1)

)
+Hϕ(η1)

(
H−
ϕ (η2)−Hϕ(η2)

)

which proves Eq. (4.9).
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Finally, we have

ψ(R(h2)−R∗) ≤ E
z

[
c11(sign(h) ̸= α∗)

(
H−
ϕ (η1)H

−
ϕ (η2)−Hϕ(η1)Hϕ(η2)

)]
≤ E

z

[
c11(sign(h) ̸= α∗)

(
Cη1
ϕ (h1(x1))C

η2
ϕ (h2(x2))−Hϕ(η1)Hϕ(η2)

)]
≤ E

z

[
c1
(
Cη1
ϕ (h1(x1))C

η2
ϕ (h2(x2))−Hϕ(η1)Hϕ(η2)

)]
= Rϕ(h2)−R∗

ϕ.

4.3.3.2 Extending to General Situations

We prove that Theorem 1 can be extended to h3, then, it can be similarly extended

to any k. Note that the key is to prove

ψ (Cη1(h1(x1))C
η2(h2(x2))C

η3(h3(x3))−H(η1)H(η2)H(η3))

≤ H−
ϕ (η1)H

−
ϕ (η2)H

−
ϕ (η3)−Hϕ(η1)Hϕ(η2)Hϕ(η3).

(4.11)

Similarly, we consider three cases: (1) only one classifier from h1, h2, h3 makes the

prediction that is opposite to α∗; (2) two classifiers from h1, h2, h3 make predictions that are

opposite to α∗; and (3) all three classifiers make predictions that are opposite to α∗.

For Case (1), the proof is similar to that in Section 4.3.3.1.

For Case (2), assume that h1, h2 make the opposite predictions. Then, we have

ψ (Cη1(h1(x1))C
η2(h2(x2))C

η3(h3(x3))−H(η1)H(η2)H(η3))

= ψ ((η̄1η̄2 − η1η2)η3) ≤ η3ψ (η̄1η̄2 − η1η2) .

Thus, based on Eq. (4.9), we can prove Eq. (4.11).
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For Case (3), without loss of generality, assume that η1 ≤ η2 ≤ η3, i.e., η̄3 ≤ η̄2 ≤ η̄1.

Then, we have

ψ (Cη1(h1(x1))C
η2(h2(x2))C

η3(h3(x3))−H(η1)H(η2)H(η3))

= ψ (η̄1η̄2η̄3 − η1η2η3)

= ψ (η̄3(η̄1η̄2 − η1η2) + η1η2(η̄3 − η3)) .

Based on Eq. (4.10), it follows that

ψ (η̄3(η̄1η̄2 − η1η2) + η1η2(η̄3 − η3))

= ψ (η̄3η̄2(η̄1 − η1) + η̄3η1(η̄2 − η2) + η1η2(η̄3 − η3))

≤ ψ (η̄1η̄2(η̄1 − η1) + η̄2η1(η̄2 − η2) + η1η2(η̄3 − η3))

≤ η̄1η̄2ψ (η̄1 − η1) + η̄2η1ψ (η̄2 − η2) + η1η2ψ (η̄3 − η3) .

Then, since η̄1 ≤ 1 ≤ H−
ϕ (η2), η̄2 ≤ 1 ≤ H−

ϕ (η3), η1 ≤ Hϕ(η1), η2 ≤ Hϕ(η2), it follows that

η̄1η̄2ψ (η̄1 − η1) + η̄2η1ψ (η̄2 − η2) + η1η2ψ (η̄3 − η3)

≤ H−
ϕ (η2)H

−
ϕ (η3)

(
H−
ϕ (η1)−Hϕ(η1)

)
+H−

ϕ (η3)Hϕ(η1)
(
H−
ϕ (η2)−Hϕ(η2)

)
+Hϕ(η1)Hϕ(η2)

(
H−
ϕ (η3)−Hϕ(η3)

)
= H−

ϕ (η1)H
−
ϕ (η2)H

−
ϕ (η3)−Hϕ(η1)Hϕ(η2)Hϕ(η3),

which proves the Eq. (4.11).

The meaning of Theorem 1 clearly gives the following corollary.

Corollary 1. Rϕ(hk)→ R∗
ϕ indicates R(hk)→ R∗.
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4.4 Experiments

4.4.1 Experiment Setup

We evaluate our method using both synthetic and real-world data. Table 4.1 provides

a summary of two datasets’ statistics. For the synthetic data, we manually define a causal

graph with five variables S,X1, X2, Y1, Y2 shown in Fig. 4.2. Then, a conditional probability

table is defined for each attribute over its parents, and the data is generated by sampling

each attribute in topological order according to the conditional probability. For the real-

world data, we use the Adult dataset [72] and build the causal graph by using the PC

algorithm implemented in the Tetrad [73]. We follow the settings in [67] to select 7 out

of 11 attributes and binarize their domain values. The significant threshold for conditional

independence testing is set as 0.01, and three tiers in the partial order are used. We handle

this imbalanced data using the over-sampling technique [74]. The resultant dataset consists

of 10,1472 records. The causal graph is shown in Fig. 4.3. We treat Age as the protected

attribute S, and Workclass and Income as two decisions Y1, Y2. By default, we use 0.05 as

the threshold for judging fairness.

We design an evaluation process which simulates the real model deployment proce-

dure. The dataset is randomly split to training and testing datasets. We deploy and evaluate

the learned classifiers sequentially according to their topological order. The first classifier

h1 is deployed first, and evaluated on the original testing dataset. After that, it produces

Table 4.1: Dataset statistics

Dataset #Instances #Attributes Sensitive Variable Decision Variable

Sythetic 10,000 5 S Y1, Y2

Adult 101,472 7 age workclass, income
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Figure 4.2: The causal graph for the synthetic dataset.

predicted decisions for Y1, which are then used to re-generate the values of the subsequent

variables in the order, as well as the true values of the next classifier h2, by using the causal

graph. In the end, we evaluate h2 based on the re-generated data.

For training, our method (referred to as the joint method) formulates the optimiza-

tion problem on the training data to learn all classifiers simultaneously. We also consider

a simplified version of our method (referred to as the serial method) that learns classifiers

sequentially following the topological order similarly to the deployment procedure. Each clas-

sifier only uses the direct parents of the label. After each classifier is learned, it is treated

as a soft intervention such that the post-intervention distribution is inferred and used to

train subsequent classifiers. We compare our methods with a baseline method (referred to

the separate method) where each classifier is learned using the direct parents separately on

the training data.

4.4.2 Implementation

All classifiers are implemented as empirical risk minimization classifiers where the

logistic surrogate function is used. For unconstrained, separate, and serial methods, each
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Figure 4.3: The causal graph for the Adult dataset.

classifier is learned individually as a convex optimization problem. Thus, we use the CVXPY

package [75] to directly solve the unconstrained/constrained convex optimization problem.

For the joint method, since the objective function and constraints are non-convex, we add

constraints as penalty terms to the objective function and adopt PyTorch [76] to optimize it

using the Adam optimizer. The convergence of Adam algorithms for non-convex optimization

has been studied, e.g., in [77]. All experiments are conducted in a PC with 8GB RAM and

Intel Core i5-1035G1 CPU.

4.4.3 Experimental Results

As discussed, since separate training does not consider the change in the data dis-

tribution caused by the deployment of new classifiers, it fails to achieve fairness in testing

even if the classifier is fair in training. To demonstrate this, Table 4.2 and Table 4.3 show

the results of one typical setting for each method on both synthetic and Adult datasets,

obtained from 5-fold cross-validation. For all methods, we manage to build classifiers that
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Table 4.2: Accuracy and unfairness from Unconstrained, Separate, Serial and Joint methods
on synthetic data (bold values indicate violation of fairness).

Phase
Synthetic

Uncons. Separate Serial Joint

Train

h1
Acc. (%) 80.32 75.35 75.35 75.35

Unfairness 0.15 0.01 0.01 0.01

h2
Acc. (%) 90.13 75.79 84.02 82.77

Unfairness 0.23 0.04 0.03 0.04

Test

h1
Acc. (%) 80.70 75.54 75.54 75.54

Unfairness 0.15 0.01 0.01 0.01

h2
Acc. (%) 89.95 77.06 84.16 82.09

Unfairness 0.13 0.09 0.03 0.03

are fair in training. For the Adult dataset, we use 0.1 as the fairness threshold for h2. We

can see that, in testing, the serial and joint methods achieve consistent performance, but the

separate method cannot guarantee to achieve fairness for h2. We also did a grid search on

thresholds τ1, τ2 on the synthetic data to find classifier pairs h1, h2 whose fairness is between

-0.05 and 0.05 in training. Then, we evaluated these classifiers in testing. We observe that,

even if we use the training data for testing to avoid any generalization error, in 71.43% of

these pairs produced by the separate method, h2 exceeded the interval [-0.05, 0.05] and hence

violated the fairness criterion. On the contrary, all classifiers produced by the serial and joint

methods are fair in testing.

Comparing the serial and joint methods, they obtain similar results. This is expected

since both of them apply the soft intervention to capture the model deployment. The ad-

vantage of the joint method is that it can adjust all classifiers simultaneously to obtain a

better overall performance. This is not shown in current experiments probably due to the

small scale of the problem. We will study whether the joint method would outperform the

serial method in larger problems in our future work.
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Table 4.3: Accuracy and unfairness from Unconstrained, Separate, Serial and Joint methods
on Adult data (bold values indicate violation of fairness).

Phase
Synthetic

Uncons. Separate Serial Joint

Train

h1
Acc. (%) 55.71 55.64 55.63 55.63

Unfairness 0.15 0.05 0.05 0.05

h2
Acc. (%) 76.75 71.17 68.90 69.31

Unfairness 0.24 0.10 0.10 0.10

Test

h1
Acc. (%) 55.63 55.56 55.57 55.57

Unfairness 0.15 0.05 0.05 0.05

h2
Acc. (%) 77.07 73.33 68.91 69.40

Unfairness 0.23 0.17 0.10 0.10

4.5 Summary

In this chapter, we proposed an approach that learns multiple fair classifiers from a

static training dataset, which is a general way to incorporate fairness constraints into the

generic classification formulation such that we can readily employ off-the-shelf classification

models and optimization algorithms. We treated the deployment of each classifier as a soft

intervention and inferred the distributions after the deployment as post-intervention distri-

butions. We adopted surrogate functions to smooth the loss function and fair constraints to

formulate the fair classification problem as a constrained optimization problem. In addition,

we theoretically showed that combining multiple decision models in the optimization would

not introduce additional surrogate errors. By conducting experiments on both synthetic and

real-world datasets, we showed that our approach consistently outperforms the approach of

building fair classifiers for each decision independently, and performs closely to the sequen-

tial learning approach where new data needs to be generated and collected after each model

deployment.
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5 Achieving Long-term Fairness in Sequential Decision Making

5.1 Introduction

Fair machine learning has received increasing attention in the past years, especially

in decision making tasks such as hiring [1], college admissions [3] and bank loans [5]. Many

algorithms for achieving fair decision making have been proposed based on various fairness

notions (e.g. demographic parity [78], equalized odds [79] and counterfactual fairness [80]).

At present, the majority of studies on fair machine learning focus on the static or one-shot

classification setting. However, in practice, decision making systems are usually operating in

a dynamic manner such that the classifier makes sequential decisions over a period of time.

In many situations, each decision made by the classifier may change the underlying data

population and further affect subsequent decisions. For example, suppose a person applies to

a bank for a loan and the bank estimates the risk of default according to his/her credit score.

Then, the bank’s decision on the loan application (e.g., whether to grant the loan and the

interest rate assigned) may in turn affect the default risk and change the person’s credit score

(e.g., the credit score will decrease if the loan is granted but he/she defaults on the loan)

which will affect his/her next loan application. If the bank’s decision leads to a long-term

decrease in the credit score, then it imposes a negative long-term effect on future decisions

for this person. Therefore, fair decision making should concern not only the fairness of a

single decision but more importantly, whether a decision model can impose fair long-term

effects on different groups. This notion of fairness is referred to as long-term fairness in recent

studies [24, 22, 51].

The challenge of achieving long-term fairness comes in two folds. Firstly, different from
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static settings, decisions made by models may change users’ behaviors, and/or affect their

status such as reputation, qualification, etc., and impact subsequent decisions via feedback

loops. Without knowing how the population would be reshaped by decisions, enforcing any

fairness constraint may create negative feedback loops and eventually harm fairness in the

long run. Recent research has demonstrated that existing fairness criteria cannot guarantee

fairness and sometimes undermine fairness even if only one time step is taken into consid-

eration [24, 81, 48, 49]. Secondly, due to the feedback loops, the deployment of the decision

model will cause changes in the data distribution that is originally used for training. This

can be viewed as a distribution shift problem as the distribution of the training data (i.e.,

distribution before the model deployment) is different from the distribution of the test data

(i.e., distribution after the model deployment). Ignoring the distribution shift will critically

affect the achievement of long-term fairness, as long-term fairness is affected by all decisions

made by the model along the time.

In this chapter, we propose a framework for achieving long-term fair sequential deci-

sion making by addressing both above challenges. We model the dynamics of the decision-

making process by employing Pearl’s Structural Causal Model (SCM) [29], in which the

relations among user features and decisions and how those decisions affect the data dis-

tribution can be encoded in a probabilistic graphical model. Specifically, we leverage the

time-lagged causal graph [82] to describe the causal relations over time, and adopt the soft

intervention [54] for modeling the model deployment and inferring its impacts on the un-

derlying population. Then, we measure long-term fairness as the path-specific effect on the

time-lagged causal graph under both the hard intervention on the sensitive attribute and

the soft intervention on the predicted decisions. A constrained optimization problem is for-

mulated to strike a trade-off between long-term fairness and model utility, as well as certain
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short-term fairness requirement that may be stipulated by law or regulations. On the other

hand, we show that the constrained optimization problem can be converted to a performa-

tive risk optimization problem [83]. Then, we employ the repeated risk minimization (RRM)

training technique [83] for dealing with the distribution shift problem. The performative

optimality and stability properties of the proposed method are theoretically and empirically

evaluated which shows its effectiveness.

To the best of our knowledge, this work is the first to propose a causality-based long-

fairness notion. The proposed learning framework is general such that it could incorporate

different combinations of surrogate functions, utility loss functions, as well as causal paths

regarding long-term fairness used to fit different applications. The experiment results show

that the proposed method can achieve long-term fairness for multiple time steps, while

the fairness performance deteriorates with time if no fairness constraint or static fairness

constraints are used.

5.2 Fairness-aware Classification

The classification problem is to learn a functional mapping f : X 7→ Y from the

labeled training data {(xi, yi)}ni=1 where xi ∈ X , yi ∈ Y and Y = {−1, 1} , by minimizing

the 0-1 loss function EX,Y [1[f(X) ̸= Y ]] where 1[·] is an indicator function. In general, f

is made up of another function h set up in the real number domain, i.e., h : X 7→ R and

1[f(X) ̸= Y ] = 1[Y h(X) ≥ 0]. Since directly minimizing the indicator is intractable, one can

replace it with a smooth and differentiable surrogate function ϕ. Then, the loss function can

can be reformulated as EX,Y [ϕ(Y h(X))]. Similarly, one can also formulate fairness constraints

as smoothed expressions using surrogate functions. As a result, fair classification problems

can be formulated as constrained optimization problems [38, 84]. We follow the notations
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used in [38, 84] in our formulations.

5.3 Formulating Long-term Fairness

We start by formally formulating the long-term fairness in sequential decision making.

Assume we have access to a temporal datasetD = {(S,Xt, Y t)}lt=1 where S is a time-invariant

protected attribute, Xt is a set of time-dependent unprotected attributes and Y t is a time-

dependent class label. Note that this setting can be viewed as observing the data of a set

of individuals at all time steps, or a more general situation where a population is subject

to the decision cycles and the data is sampled at each time step. For ease of discussion, we

assume both class label and protected attribute are binary variables, i.e., S = {s+, s−} with

s+ denoting the unprotected group and s− denoting the protected group, and Y = {1,−1}

with 1 denoting the positive decision and −1 denoting the negative decision, but proposed

concepts could be extended to multiple protected attributes and multiple/continuous labels

situations. A predictive decision model hθ(·) parameterized by θ is trained on D. Then, it is

deployed to make predicted decisions Ŷ t from (S,Xt) repeatedly at each time, i.e., Ŷ t = 1

if hθ(s,x
t) ≥ 0 and Ŷ t = −1 otherwise, forming a sequential decision making process. Such

sequential decision making process is common in practice. For example, a bank repeatedly

makes lending decisions based on applicants’ profile such as credit score, income, etc., and

a predictive policing algorithm repeatedly makes decision about where to send police for

patrolling based on the crime discovered in the neighborhood. The ultimate goal of long-

term fair machine learning is to ensure that the model hθ(·) is fair in a long-term stage

denoted by t*. In this chapter, we assume there is sufficient historical training data such

that l ≥ t∗.
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5.3.1 Causality-based Long-term Fairness

We develop the long-term fairness notion by leveraging Pearl’s SCM. First, we assume

a time-lagged causal graph G for describing the causal relationship among variables over time.

In recent years, structure learning algorithms have been proposed for constructing time-

lagged causal graphs from data, including both constrained-based approaches [85, 86, 87]

and continuous optimization-based approaches [88, 89] which can be leveraged to learn the

time-lagged causal graph from data. Figure 5.1 shows a typical example of the time-lagged

causal graph in our settings: the edge from S to X0 represents the bias in the distribution

of X due to historical reasons; the edges from S and Xt to Y t represent that S and Xt are

used as the input to compute Ŷ t; and the edges from Xt and Y t to Xt+1 represent how the

distribution of X would be reshaped via feedback after each decision.

Next, we formulate long-term fairness as path-specific effects that are transmitted in

the time-lagged causal graph along certain paths. The path-specific effects reflect how the in-

tervention affects each variable on the path in a topological order and hence are appropriate

for capturing dynamics in sequential decision making. Similar to the indirect discrimination

in static fair machine learning [64, 66], we can also justify the use of the path-specific ef-

fect by the need to distinguish discriminatory effects from explainable effects. We consider

discriminatory effects as those which are due to biased decisions made by the decision mak-

ing system in the past and will continue to influence future decisions. Correspondingly, we

consider explainable effects as those which are attributed to external factors and cannot be

eliminated within the decision making system. To this end, we categorize unprotected at-

tributes X into two disjoint subsets: irrelevant attributes Xi and relevant attributes Xr. We

define irrelevant attributes as those which are justifiable in decision making, and meanwhile
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evolved autonomously or/and altered by external factors only. We define the rest of attributes

as relevant attributes, which could be unjustifiable in decision making or reshaped by the

decision over time. Then, we define long-term fairness as the causal effect where the influence

of the hard intervention on S is transmitted in the causal graph by passing through relevant

attributes only. Note that the influence of the soft intervention on Y is still transmitted

through all causal paths.

Finally, we propose to adopt soft interventions as a key technique for modeling decision

model deployment and inferring its impacts on the underlying population. We treat the

deployment of the decision model at each time step as to perform a soft intervention on

the decision variable. More specifically, we force the structural equation associated with Y t

in the causal model to be replaced by the decision model hθ(·) that outputs Ŷ t. Thus, the

change to underlying population could be inferred as the post-intervention distribution after

performing the soft intervention. Meanwhile, to quantify fairness as causal effects of the

protected attribute on the decision, we perform hard intervention on the protected attribute

in order to answer the “what if” question, i.e., “what would the decision be if we intervene

the gender of applications to female?” As a result, we perform both hard intervention and

soft intervention simultaneously for measuring long-term fairness as causal effects.

Symbolically, denote by π the set of causal paths from S to Ŷ t∗ through relevant

attributes X1
r, · · · ,Xt∗

r and Ŷ 1, · · · , Ŷ t∗−1 but not through irrelevant attributes X0
i , · · · ,Xt∗

i .

Meanwhile, as we conduct path-specific hard intervention on S and soft interventions on Y to

deploy decision model hθ(·), we denote the post-intervention distribution of Ŷ t by Ŷ t(sπ, θ)

which explicitly shows that the soft intervention depends on parameters θ. Then, we can

readily propose the quantitative notion for long-term fairness.

Definition 11 (Long-term Fairness). The long-term fairness of a decision model hθ(·) is
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S

X1 X2 X3 ... Xt∗

Y 1 Y 2 Y 3 ... Y t∗

hθ hθ hθ ... hθ

X1 X2 X3 ...

Figure 5.1: A time-lagged causal graph for sequential decision making. Long-term fairness
is captured by paths in red, and short-term fairness is captured by paths in green.

measured by P (Ŷ t∗(s+π , θ)) − P (Ŷ t∗(s−π , θ)) where π is a set of paths from S to Ŷ t∗ passing

through X1
r, Ŷ

1, · · · , Xt∗−1
r , Ŷ t∗−1, Xt∗

r , sπ represents the path-specific hard intervention and

θ represents the soft intervention through all paths.

5.3.2 Loss Function and Short-term Fairness

In addition to long-term fairness, a desired fair decision model should also satisfy

two other requirements. Firstly, it is a natural desire for a predictive decision model to

maximize the institution utility, e.g., the loan granting model of a bank certainly wants to

maximize the expected return from loans. Secondly, the decision model should also satisfy

certain short-term fairness requirement at each time step to enforce local equality, which

may be stipulated by law or regulations. For example, the Equal Credit Opportunity Act,

1974, prohibits lending decisions from being influenced by race, age, religion, etc. Similar

to the direct discrimination in static fair machine learning, we consider a subset of relevant

attributes X̃r ⊂ Xr which are unprotected but cannot be justifiably used in the decision

making either directly or indirectly, referred to as the redlining attributes [64]. Then, we
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measure the short-term fairness by the causal effect of S on Ŷ t along paths that pass through

X̃r, i.e., S → X̃r → Ŷ t, as well as the direct edge S → Ŷ t at each time step t.

We note that trade-off may exist between fairness and utility, as well as between

long-term and short-term fairness. The long-term fairness focuses on remedying past dis-

crimination existed in the system, but has no constraint on the biases in the decision at each

time step. The short-term fairness, on the other hand, cares about fairness in the decision

making process at each time step, but pays no attention in correcting past discrimination in

the population. One should combine long-term and short-term fairness to force the decision

model to take into consideration both factors and to remove discrimination in the system

gradually with time. Therefore, we similarly propose quantitative notions for short-term

fairness and institution utility as follows.

Definition 12 (Short-term Fairness). The short-term fairness of a decision model hθ(·) at

time t is measured by the causal effect transmitted through paths involved in time t, i.e.,

P (Ŷ t(s+πt , θ))− P (Ŷ t(s−πt , θ)), where πt = {S → X̃r → Ŷ t, S → Ŷ t} with redlining attributes

X̃r, sπ is the path-specific hard intervention and θ represents the soft intervention.

Definition 13 (Institution Utility). The institution utility of decision model hθ(·) is mea-

sured by the aggregate loss given by
∑t∗

t=1 E[L(Y t, Ŷ t)] where L(·) is the loss function.

5.4 Learning Fair Decision Models

After formulating related notions, we are ready to formulate the fair sequential de-

cision making problem given a time-lagged causal graph. To ease the representation, in

following discussions we consider the simplified causal graph shown in Figure 5.1 where only

relevant attributes with no redlining attributes exist. In this case, the long-term fairness is
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captured by paths from S to Ŷ t∗ throughX1, Ŷ 1, · · · ,Xt∗ as shown in red, and the short-term

fairness is captured by the direct edge S → Ŷ t at each time t as shown in green. However,

all our discussions can be applied to our general formulation that includes both relevant and

irrelevant features.

The goal is to learn a functional mapping hθ : (Xt, S) 7→ Y t parameterized with θ,

i.e., Ŷ t = hθ(X
t, S). Based on the discussions above, we formulate a constrained optimization

problem which minimizes the loss while subject to long-term fairness and short-term fairness

constrains simultaneously. The thresholds τl and τt control the strictness of constraints.

Problem Formulation 2. The problem of fair sequential decision making is formulated as

the constrained optimization:

argmin
θ

t∗∑
t=1

E
[
L(Y t, Ŷ t)

]
s.t. P

(
Ŷ t∗(s+π , θ)=1

)
− P

(
Ŷ t∗(s−π , θ)=1

)
≤ τl,

P
(
Ŷ t(s+πt , θ)=1

)
− P

(
Ŷ t(s−πt , θ)=1

)
≤ τt,

t = 1, · · · , t∗

where τl and τt are thresholds for long-term fairness and short-term fairness constraints,

respectively.

5.4.1 Formulating as Performative Risk Optimization

Solving the optimization problem in Problem Formulation 1 is not trivial. According

to the path-specific effect inference [90] and the definition of soft intervention [54], post-

intervention probability P (Ŷ t∗(s+π , θ) = 1) is given by
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∑
X1,Y 1,··· ,Xt∗

{
P (x1|s+)Pθ(y1|x1, s−) · · ·P (xt∗|xt∗−1, yt∗−1)Pθ(Y t∗ =1|xt∗ , s−)

}
, (5.1)

where Pθ(y|x, s−) is a probabilistic function determined by hθ(·). As a result, P (Ŷ t∗(s+π , θ) =

1) is a complex nonlinear function of θ, making Problem Formulation 1 difficult to solve.

In the following, we show how Problem Formulation 1 is converted to a performative risk

optimization problem and then propose an optimization algorithm by leveraging repeated

risk minimization.

Following the notation of convex optimization of classification, we denote by ϕ a

convex surrogate function. Then, we can formulate the loss function as

L(Y t, Ŷ t) = 1
[
Y thθ(X

t, S) < 0
]
= ϕ

(
Y thθ(X

t, S)
)
.

We can also apply the surrogate function to the fairness constraints. For any t, we

have

P
(
Ŷ t(s+π , θ)=1

)
=

∑
Xt

P
(
xt(s+π , θ)

)
Pθ(Y

t=1|x, s−).

Similar to [84], we estimate Pθ(Y
t=1|x, s−) by first treating it as 1 [hθ (x

t, s−) ≥ 0] and then

replacing the indicator function by ϕ(·):

P
(
Ŷ t(s+π , θ)=1

)
=

∑
Xt

P
(
xt(s+π , θ)

)
ϕ
(
−hθ

(
xt, s−

))
= E

Xt ∼ P (Xt(s+π , θ))

[
ϕ
(
−hθ

(
Xt, s−

))]
.

Similarly, we have
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−P
(
Ŷ t(s−π , θ)=1

)
= P

(
Ŷ t(s−π , θ)=0

)
− 1 = E

Xt ∼ P (Xt(s−π , θ))

[
ϕ
(
hθ

(
Xt, s−

))]
− 1.

Then, we define utility loss lu(θ), long-term fairness loss ll(θ), and short-term fairness

loss ls(θ) as follows.

lu(θ) =
t∗∑
t=1

E
S,Xt, Y t ∼ P (S,Xt, Y t)

[
ϕ
(
Y thθ(X

t, S)
)]
,

ll(θ) =
1

2

{
E

Xt∗ ∼ P
(
Xt∗(s+π , θ)

)
[
ϕ
(
−hθ

(
Xt∗ , s−

))]
+ E

Xt∗ ∼ P
(
Xt∗(s−π , θ)

)
[
ϕ
(
hθ

(
Xt∗ , s−

))]
− 1− τl

}
,

ls(θ) =
1

t∗

t∗∑
t=1

{
E

Xt ∼ P
(
Xt(s−πt , θ)

)
[
ϕ
(
−hθ

(
Xt, s+

))]
+ E

Xt ∼ P
(
Xt(s−πt , θ)

)
[
ϕ
(
hθ

(
Xt, s−

))]
− 1− τt

}
.

By adding the long-term and short-term fairness losses as regularization terms into

the objective function, we obtain an unconstrained optimization problem as given in Prob-

lem Formulation 2. The general formulation of the performative risk optimization can be

given by argminθ E
Z∼D(θ)

l(Z; θ) where Z represents the set of all attributes and outcome [83].

Thus, Problem Formulation 2 can be considered as a performative risk optimization prob-

lem as all terms in the objective function are represented as expectations of the loss function

over the distributions that depend on the loss function parameters. Compare with Problem

Formulation 1, Problem Formulation 2 relaxes the fairness constraints and certain amount

of violations to the constraints are allowed. However, Problem Formulation 2 can be solve

more efficiently by leveraging the repeated risk minimization technique as shown in the next

subsection.
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Problem Formulation 3. The problem of fair sequential decision making is reformulated

as the performative risk optimization:

argmin
θ

l(θ) = λulu(θ) + λlll(θ) + λsls(θ) (5.2)

where λu, λl and λs are weight parameters and satisfy λu + λl + λs = 1.

5.4.2 The Algorithm of Repeated Risk Minimization

Repeated risk minimization (RRM) is an iterative algorithmic heuristic for solving

the performative risk optimization problem. The procedure of the RRM is to start from an

initial model and repeatedly find a model that minimizes the loss function on the distribution

resulting from the previous model, which can symbolically represented as the update rule

θi+1 = argminθ E
Z∼D(θi)

l(Z; θ) [83]. The RRM converges if the model that minimizes the loss

remains unchanged from the previous model, i.e., θi+1 = θi.

To implement the RRM algorithm in our context with three different loss terms, we

sample different distributions at each iteration. For computing lu(θ), the data distribution

does not change with the deployment of new models, and we always use the original dataset

D to compute lu(θ). For computing ll(θ), the data distribution follows the post-intervention

distribution P (Xt∗(s+π , θ)) (resp. P (Xt∗(s−π , θ))). Thus, we sample the data according to

the inference formula that is similar to Eq. (5.1) where a smooth probabilistic function

Pθ(y|x, s) is used. Specifically, we first sample X1 according to the distribution P (X1|s+)

(resp. P (X1|s−)), and sample the decision for each sample according to Pθ(Y
1|x1, s−). Then,

we sample X2 according to the distribution P (X2|X1, Y 1) upon the samples obtained at

the first time step. We repeat this process until time t∗ to obtain samples for Xt∗ for com-
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Algorithm 1: Repeated Risk Minimization

Input : Dataset D = {(S,Xt, Y t)}lt=1, time-lagged causal graph G,
convergence threshold δ

Output: The stable model hθ

1 Train a classifier on D according to Eq. (5.2) without the soft intervention to
obtain the initial parameter θ0;

2 i← 0;
3 repeat
4 Sampled the post-intervention distributions P

(
Xt∗(s+π , θi)

)
and

P
(
Xt∗(s−π , θi)

)
;

5 Sampled the post-intervention distributions P (Xt(s+π , θi)) and
P (Xt(s−π , θi)) for each t;

6 Minimize l(θ) according to Eq. (5.2) to obtain θi+1;
7 △ = ∥θi+1 − θi∥2;
8 i→ i+ 1;

9 until △ < δ;
10 θ ← θi;
11 return hθ;

puting ll(θ). For computing ls(θ), we similarly sample the distributions P (Xt(s+πt , θ)) and

P (Xt(s−πt , θ)) for each time step t. The procedure of our algorithm starts from an initial

model hθ0 directly trained on D, and repeatedly train the model on the re-sample data at

each iteration, until the model converges to performative stability. The pseudocode of this

procedure is described in Algorithm 1.

5.4.3 Convergence Analysis of RRM

We now conduct performative stability analysis for our algorithm. The convergence

of the RRM algorithm depends on the smoothness and convexity of the loss function, as

well as the sensitivity of the distribution to the parameters [83]. Specifically, given a general

RRM formulation θi+1 = argminθ E
Z∼D(θi)

l(Z; θ), if loss function l(·) is β-jointly smooth and

γ-strongly convex, and distribution D(θ) is ε-sensitive, then the RRM converges to a stable

point if ε < β
γ
. We similarly analyze these factors for our problem and then give the theoretical
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convergence result.

Lemma 2. If the surrogated loss function (ϕ ◦ h)(·) is γ-strongly convex, then f(·) is γ-

strongly convex.

Lemma 2 can be directly proven according to the sum rule of the gradient.

Next, we study the sensitivity of the distributions. Consider the distribution P (Xt(sπ, θ))

for any t. Its sensitivity to θ depends on to what extend the decisions will impact the at-

tributes via the feedback loop. By assuming that the change of the distribution over the

attributes in respond to the change of θ is bounded by a constant, we present following

lemma.

Definition 14. For any t, attributes Xt+1 are c-sensitive if

∥
∑
Y t

∇θPθ(y
t|xt, s)P (xt+1|xt, yt)∥ ≤ c

∑
Y t

P (xt+1|xt, yt).

Lemma 3. For any t, suppose that Xt+1 are c-sensitive, then distribution

P (Xt(sπ, θ)) is ε-sensitive with ε ≤ 2mc(t − 1), where m is the maximum ground distance

between two values of Xt.

Proof. Let Dxt(θ) denote probability P (xt|do(sπ, θ)) and D(θ) denote the corresponding

distribution. We adopt a simple greedy strategy to solve the transportation problem to

obtain a upper bound of W1(D(θ), D(θ′)). We transverse through each value of Xt. For each

xt, if the amount of dirt in Dxt(θ) is larger than that of Dxt(θ′), then we move the additional

dirt to a pool. If the amount of dirt in Dxt(θ) is less than that of Dxt(θ′), then we insert

this demand into a queue and move the dirt from the pool to Dxt(θ) as soon as there is

enough dirt in the pool. As a result, the total amount of dirt moved by this strategy is

60



∑
Xt |Dxt(θ)−Dxt(θ′)|. Thus, we have

W1(D(θ), D(θ′)) ≤
∑
Xt

|Dxt(θ)−Dxt(θ′)| ·m, (5.3)

where m is maximum ground distance between two values of Xt. Then, according to the

mean value theorem and Cauchy–Schwarz inequality, we have

|Dxt(θ)−Dxt(θ′)| = |∇Dxt(η) · (θ − θ′)| ≤ ∥∇Dxt(η)∥∥θ − θ′∥ (5.4)

for some η ∈ [θ, θ′]. By definition of Dxt(θ), it follows that

Dxt(θ) := P (xt|do(sπ, θ)) =
∑

X1,Y 1,··· ,Y t−1

P (x1|s)Pθ(y1|x1, s) · · ·P (xt|xt−1, yt−1).

Thus, we have

∇Dxt(θ) =
∑

X1,Y 1,··· ,Y t−1

{
P (x1|s)∇Pθ(y1|x1, s) · · ·P (xt|xt−1, yt−1)

+ P (x1|s)Pθ(y1|x1, s)P (x2|x1, y1)∇Pθ(y2|x2, s) · · ·+ · · · }

According to the definition of c-sensitivity, we have

∥
∑
Y t

∇θPθ(y
t|xt, s)P (xt+1|xt, yt)∥ ≤ c

∑
Y t

P (xt+1|xt, yt).
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By the triangle inequality, it follows that

∥∇Dxt(θ)∥ ≤
∑

X1,Y 1,··· ,Y t−1

{
P (x1|s)cP (x2|x1, y1) · · ·P (xt|xt−1, yt−1)

+ P (x1|s)Pθ(y1|x1, s)P (x2|x1, y1)cP (x3|x2, y2) · · ·+ · · · }

= c
∑

X1,Y 1,··· ,Y t−1

{
P (x1,x2, · · · ,xt|do(y1))

+P (x1, y1, · · · ,xt|do(y2)) + · · ·
}

= c

{∑
Y 1

Pθ(x
t|do(s, y1)) + · · ·+

∑
Y t−1

Pθ(x
t|do(s, yt−1))

}
,

(5.5)

where the second step is based on the truncated factorization formula of computing the

do-operation. Combining Eqs. (5.3), (5.4), and (5.5), we have

W1(D(θ), D(θ′)) ≤ mc
∑
X

{∑
Y 1

Pη(x
t|do(s, y1)) + · · ·+

∑
Y t−1

Pη(x
t|do(s, yt−1))

}
∥θ − θ′∥

= 2mc(t− 1)∥θ − θ′∥.

Hence, the lemma is proven.

After introducing the above two lemmas, we now present our main theoretical result.

Theorem 2. Suppose that surrogated loss function (ϕ ◦ h)(·) is β-jointly smooth and γ-

strongly convex, and suppose that Xt+1 are c-sensitive for any t, then the repeated risk min-

imization converges to a stable point at a linear rate, if 2mc(t∗ − 1) < β
γ
.

Proof. This proof basically follows the proof of Theorem 3.5 in [83].

Fix θ, θ′ ∈ Θ. Let

fa(φ) =
t∗∑
t=1

E
S,Xt, Y t ∼ P (S,Xt, Y t)

[
ϕ
(
Y thφ(X

t, S)
)]
,
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fl(φ) =
1

2

{
E

Xt∗ ∼ P
(
Xt∗|do((s+π , θ)

)
[
ϕ
(
−hφ

(
Xt∗ , s−

))]
+ E

Xt∗ ∼ P
(
Xt∗|do((s−π , θ)

)
[
ϕ
(
hφ

(
Xt∗ , s−

))]
− 1

}
,

fs(φ) =
1

t∗

t∗∑
t=1

{
E

Xt ∼ P
(
Xt|do((s+πt , θ)

)
[
ϕ
(
−hφ

(
Xt∗ , s−

))]
+ E

Xt∗ ∼ P
(
Xt∗|do((s−πt , θ)

)
[
ϕ
(
hφ

(
Xt∗ , s−

))]
− 1

}
,

and

f(φ) = λafa(φ) + λlfl(φ) + λsfs(φ).

Define f ′(φ) similarly to f(φ) by replacing θ with θ′. Let G(θ) = argminφ f(φ). Since

(ϕ ◦ h)(·) is γ-strongly convex, f(·) is at least γ-strongly convex. Then, we have

f(G(θ))− f(G(θ′)) ≥ (G(θ)−G(θ)′)⊤∇f(G(θ′)) + γ

2
∥G(θ)−G(θ′)∥22,

f(G(θ′))− f(G(θ)) ≥ γ

2
∥G(θ)−G(θ′)∥22.

Combining the two inequalities we have

−γ∥G(θ)−G(θ′)∥22 ≥ (G(θ)−G(θ)′)⊤∇f(G(θ′)). (5.6)

On the other hand, since (ϕ ◦ h)(·) is β-jointly smooth, by applying Cauchy-Schwarz

inequality we have that (G(θ)−G(θ)′)⊤∇ϕ(hG(θ′)(x
t∗ , s)) is ∥G(θ)−G(θ′)∥2β-Lipschitz. Using

the dual formulation of the optimal transport distance and Lemma 1, we have

(G(θ)−G(θ)′)⊤∇fl(G(θ′))− (G(θ)−G(θ)′)⊤∇f ′
l (G(θ

′))

≥ −εβ∥G(θ)−G(θ′)∥2∥θ − θ′∥2,
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(G(θ)−G(θ)′)⊤∇fs(G(θ′))− (G(θ)−G(θ)′)⊤∇f ′
s(G(θ

′))

≥ −εβ∥G(θ)−G(θ′)∥2∥θ − θ′∥2,

where ε = 2mc(t∗ − 1). In addition, we have

(G(θ)−G(θ)′)⊤∇fa(G(θ′))− (G(θ)−G(θ)′)⊤∇f ′
a(G(θ

′)) = 0

Adding up above three (in)equalities, we have

(G(θ)−G(θ)′)⊤∇f(G(θ′))− (G(θ)−G(θ)′)⊤∇f ′(G(θ′))

≥ −εβ∥G(θ)−G(θ′)∥2∥θ − θ′∥2.

Due to the first-order optimality conditions for convex functions, it follows that

(G(θ)−G(θ)′)⊤∇f(G(θ′)) ≥ −εβ∥G(θ)−G(θ′)∥2∥θ − θ′∥2. (5.7)

Combining Eqs. (5.6) and (5.7), we have

−γ∥G(θ)−G(θ′)∥22 ≥ −εβ∥G(θ)−G(θ′)∥2∥θ − θ′∥2.

By rearranging, we have

∥G(θ)−G(θ′)∥2 ≤ ε
β

γ
∥θ − θ′∥2.
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Let θPS be a stable point, i.e., G(θPS) = θPS. In addition, by definition we have

θi = G(θi−1). Thus, it follows that

∥θi − θPS∥ ≤ ε
β

γ
∥θi−1 − θPS∥2 ≤

(
ε
β

γ

)i

∥θ0 − θPS∥2.

Therefore, if ε = 2mc(t∗ − 1) < β
γ
, the RRM converge to θPS at a linear rate.

Hence, the theorem is proven.

In practice, this theoretical criterion of convergence may be difficult to meet. However,

our experimental results show that our algorithm can converge under reasonable conditions.

5.5 Experiments

We conduct experiments on both synthetic and semi-synthetic temporal datasets to

evaluate the proposed algorithm. We show that our algorithm is effective in achieving both

long-term and short-term fairness, while previous fair algorithms that do not consider the

dynamics in sequential decision making actually do not mitigate or even exacerbate the

short-term or long-term fairness. We consider three baselines in the experiments which treat

the whole temporal dataset as a static dataset and train the decision model on it. Fairness

constraints are added following the technique proposed in [38].

• Logistic Regression (LR): An unconstrained logistic regression model which takes

user features and labels from all time steps as inputs and outputs.

• Fair Model with Demographic Parity (FMDP): On the basis of the logistic

regression model, fairness constraint is added to achieve demographic parity.
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• Fair Model with Equal Opportunity (FMEO): On the basis of the logistic re-

gression model, fairness constraint is added to achieve equal opportunity.

5.5.1 Datasets

Synthetic Data. We simulate a process of bank loans following the time-lagged

causal graph depicted in Figure 5.1, where S is the protected attribute like race,Xt represents

the financial status of applicants, and Y t represents the decisions about whether or not to

grant loans. At t = 1, we generate samples where both values of S are sampled with the

equal probability, and the values ofX1 are sampled using two different Gaussian distributions

according to the value of S. Then at each time t, we sample predicted decisions Ŷ t and the

values of Xt+1 as follows. Consider a ground-truth decision model hθ∗(·) for deciding the

probability of whether an individual would default on a loan, given by σ(hθ∗(·)) where σ(·)

is the sigmoid function. Then, we sample the predicted decision Ŷ t (as well as the actual

repayment Y t which is sampled separately) from σ(hθ∗(·)) as:

P (Ŷ t) = σ(hθ∗(X
t, S)), Ŷ t ∼ 2 · Bernoulli(P (Ŷ t))− 1.

Then, Xt+1 is generated according to the update rule below:

Xt+1 =


Xt − ϵ · θt + b Ŷ t = 1, Y t = −1

Xt + ϵ · θt + b Ŷ t = 1, Y t = 1

Xt + b Ŷ t = −1

(5.8)

where ϵ is a parameter that controls the sensitivity of the update to the predicted decisions,

and b = S · b1 + (1 − S) · b0 is a small base increment at each time step. In the simulation
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process, we generate a 5-step synthetic dataset with 5000 samples where parameters are set

as ϵ = 0.5, b0 = 0.2, b1 = 1.0.

Semi-synthetic Data. We use the Taiwan credit card dataset [91] as the initial

data at t = 1. To form a balanced dataset, we extract 3000 samples and choose two features

PAY AMT1 and PAY AMT2 that are appropriate in fitting into our update rule. Then, we

generate a 4-step dataset using the same update rule as shown above.

5.5.2 Training and Evaluation

We conduct the training process following the RRM algorithm. At each iteration, we

sample the data according to the current decision model and the causal graph. Similar to the

data generation process, predicted decisions are sampled according to the probability given

by σ(hθ(·)), and the feature values are sampled according to Eq. (5.8). In our experiments,

we assume that the true update rule is known in order to remove errors introduced by causal

graph construction. In practice, the causal graph learned from data may introduce additional

errors.

We then design an evaluation process which simulates the real model deployment

procedure and feedback loops. At each time step t, we use the trained decision model hθ(·)

to make decisions Ŷ t, and use the ground-truth model hθ∗(·) to determine the repayment

Y t. The accuracy is measured by comparing Ŷ t and Y t, the long-term fairness is measured

based on the distribution of Ŷ t∗ in the evaluation, and the short-term fairness is measured

based on the distribution of Ŷ t at different time steps according to proposed definitions.
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Alg. Metric
Time steps

t=1 t=2 t=3 t=4 t=5

RL

Acc 0.912 0.894 0.917 0.921 0.917

Short 0.152 0.160 0.166 0.164 0.174

Long 0.058 0.117 0.173 0.246 0.340

FMDP

Acc 0.735 0.706 0.704 0.708 0.725

Short 0.212 0.216 0.224 0.220 0.232

Long 0.180 0.306 0.376 0.431 0.481

FMEO

Acc 0.829 0.790 0.795 0.800 0.814

Short 0.010 0.010 0.010 0.014 0.020

Long 0.080 0.122 0.190 0.276 0.352

Ours

Acc 0.801 0.754 0.729 0.707 0.692

Short 0.012 0.008 0.012 0.008 0.002

Long 0.040 0.024 0.020 0.012 0.002

Table 5.1: Accuracy, short-term and long-term fairness of different algorithms on the syn-
thetic dataset.

Alg. Metric
Time steps

t=1 t=2 t=3 t=4

RL

Acc 0.828 0.826 0.841 0.816

Short 0.015 0.018 0.021 0.012

Long 0.038 0.088 0.243 0.433

FMDP

Acc 0.830 0.843 0.846 0.841

Short 0.063 0.066 0.075 0.069

Long 0.038 0.076 0.223 0.397

FMEO

Acc 0.824 0.830 0.830 0.813

Short 0.072 0.075 0.087 0.078

Long 0.006 0.045 0.156 0.295

Ours

Acc 0.648 0.648 0.680 0.687

Short 0.006 0.006 0.003 0.006

Long 0.064 0.043 0.016 0.003

Table 5.2: Accuracy, short-term and long-term fairness of different algorithms on the semi-
synthetic dataset.
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5.5.3 Implementation Details

For baselines FMDP and FMEO, they are formulated as constrained optimization

forms which are directly solved by the CVXPY package [75]. For our algorithm, we use the

logistic loss function for the surrogate function ϕ and the linear model for the decision model.

All algorithms use the l2-regularization which can equip the logistic loss function with strong

convexity. In our algorithm, ReLU activation function is adopted to ensure that the fairness

constraints are always non-negative, and we adopt PyTorch [76] to implement optimization

with Adam optimizer.

5.5.4 Results

The results of the accuracy and fairness of the baselines and our algorithm on the

synthetic dataset are shown in Table 5.1. As can be seen, our algorithm achieves the short-

term fairness at all time steps. More importantly, the long-term fairness is improved with

time and approaches zero at t = 5. For other baselines, there is a clear trend that the long-

term fairness continuously accumulates with time. This demonstrates that static fairness

notions may harm fairness in the long run. The short-term fairness remains stable with time

as it shows the bias in the model that is related to the protected attribute. The experiments

on the semi-synthetic dataset produce similar results as shown in Table 5.2. We also observe

a trade-off between accuracy and fairness meaning that some accuracy needs to be sacrificed

in order to achieve fairness.

We also plot in Figure 5.2 the convergence results of our algorithms for different ϵ

values. As mentioned earlier, the value of ϵ controls the sensitivity of Xt+1 to the update of

θ. Figure 5.2 shows that our algorithm converges when the value of ϵ is reasonably small,

which is consistent with the results in [83]. We observe similar results on the semi-synthetic
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Figure 5.2: The convergence results for different values of ϵ on the synthetic dataset.

dataset.

5.6 Summary

We proposed a framework to achieve long-term fairness in sequential decision making.

The decision-making process was modeled by a time-lagged causal graph, in which the hard

intervention was performed on the protected attribute and soft interventions were performed

on the decisions. We measured both long-term and short-term fairness as path-specific ef-

fects. The problem of fair sequential decision making was formulated as a performative risk

optimization problem, and repeated risk minimization is adopted to train the model on

the datasets sampled from post-intervention distributions. The convergence of the proposed

algorithm was analyzed theoretically. Finally, we verified the effectiveness of the proposed

framework and algorithm by comparing it with the baselines on two synthetic datasets.
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6 Long-term Fair Decision Making Through Deep Generative Models

6.1 Introduction

In the last chapter, we propose to use causal time series graphs to model the system

dynamics. The machine learning model deployment is modeled as soft interventions on the

graph and the influence of feedback is inferred as the interventional distribution. Long-term

fairness is formulated as path-specific effects of the sensitive attribute on the decision at time

step T and is achieved by using continuous optimization.

Although the last chapter shows that our approach can reduce the discrimination and

bias up to a certain time step, a critical limitation is that to achieve fairness at time step T

it requires a time series training dataset whose time length l is greater than T . However, a

practical requirement in long-term fair machine learning is to protect disadvantaged groups

from pernicious long-term effects in the future that is beyond the data we have, as shown in

Figure 6.1. This requires one not only to capture the dynamics in history but also to predict

the potential long-term impacts in the future based on the historical data and a fair decision

model should minimize such potential long-term impacts. In addition, in order to quantify

causal fairness [58], we need to predict not only the observational distribution but also the

interventional distribution beyond the training data.

In this chapter, we address the above limitations by developing a deep generative

model that can predictively generate data following both observational and interventional

distributions, and integrating the prediction and training into a collaborative training frame-

work so that the predicted data could be used as reliable data for training the decision model.

To this end, we propose a three-phase approach. In Phase 1, given a training time series within
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Figure 6.1: Diagram of training and test in long-term fair machine learning where T ≤ l
(above) and T > l (below).

the time range [1, l], we first train a baseline model for predicting decisions in a static setting

on the training data. In Phase 2, we train a recurrent conditional generative adversarial

network (RCGAN) which is motivated by [92] for fitting the training time series so that it

can generate high-fidelity time series. Finally, in Phase 3, we train a fair decision model on

the generated time series within the time range [1, T ] (T > l) by considering both local and

long-term fair constraints. The optimization problem is formulated as a performative risk

minimization and solved by using the repeated gradient descent algorithm.

To define long-term fairness, different from the last chapter where the long-term

fairness is defined as path-specific risk difference of the decision at time step T , we consider

the interventional distribution of features at time step T and measure the 1-Wasserstein

distance between the interventional distributions under two different interventions on the

sensitive feature. We argue that the long-term fairness metric we proposed is more general

than that in the last chapter, because according to the Kantorovich-Rubinstein duality our

metric provides an upper bound to the path-specific risk difference of the decision at time

step T for a set of reasonable decision models other than a single learned model.
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We conduct experiments on both synthetic and semi-synthetic datasets. The results

show that given a historical time series, our framework can use the data to train a decision

model such that once deployed it can achieve fairness at a certain time step in the future,

whereas unfairness may be accumulated if traditional fairness notions are used.

6.2 Background Revisit

We utilize Pearl’s structural causal model (SCM) and causal graph [29] for defining

the long-term fairness metric and designing the architecture of the deep generative model.

For a gentle introduction to SCM please refer to [93]. In this paper, we assume theMarkovian

SCM such that the exogenous variables are mutually independent.

Causal inference in the SCM is facilitated with the interventions [29]. The hard inter-

vention forces some variables to take certain constants. The soft intervention, on the other

hand, forces some variables to take certain functional relationships in responding to some

other variables [54]. Symbolically, the soft intervention that substitutes equation X = fX(·)

with a new equation X = g(·) is denoted as σX=g(·). The distribution of another variable Y

after performing the soft intervention is denoted as P (Y (σX=g(·))).

6.3 Long-term Fairness Metric

6.3.1 Problem Setting

We start by formulating a long-term fairness metric that captures the system dy-

namics and permits continuous optimization. To ease the representation, we assume a bi-

nary sensitive feature for indicating the advantaged and disadvantaged groups denoted by

S ∈ S = {s+, s−}, as well as a binary decision denoted by Y ∈ Y = {y+, y−}. The profile
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features other than the sensitive feature are denoted by X ∈ X . In a sequential decision-

making system, if a feature is time-dependent, it means that its value may change from one

time step to another. We assume that X and Y are time-dependent and use the superscript

to denote their variants at different time steps, leading to Xt and Y t. For S, naturally many

sensitive attributes are time-independent, like gender and race. Some sensitive attributes

may change over time, but the relative order of individuals in the data does not change, like

age. Thus, we treat S as being time-independent in this chapter.

Suppose that we have access to a time series D = {(S,Xt, Y t)}lt=1. We assume an

SCM for describing the data generation mechanism and leverage a causal time series graph

for describing the causal relation among S,Xt, Y t in the SCM. We make the stationarity

assumption such that data distribution may shift over time but the data generation mech-

anism behind it does not change. Figure 6.2 gives an example which shows that at each

time step the decision Y t is made based on the value of Xt and S. Meanwhile, the value

of Xt is affected by the values of Xt−1, Y t−1 and S. We will use this graph as a running

example throughout the remaining of this chapter. In practice, the causal time series graph

can be obtained from the domain knowledge or learned from data using structure learning

algorithms (e.g., [94, 87, 88]). Our goal is to learn a decision model hθ : S × X 7→ Y such

that when deployed at every time step, fairness can be achieved at a certain time step T

where T > l.

To illustrate our problem setting in a real-world scenario, consider an example of a

bank loan system. When people apply for bank loans, their personal information (e.g., race,

job, assets, credit score, etc.) is used by the bank’s decision model to decide whether to grant

the loans. Except for race, which is a sensitive feature S, other profile features Xt represent

an applicant’s qualification at time step t. The bank’s decision Y t can have impacts on the
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S

X1 X2 X3 ... XT

Y 1 Y 2 Y 3 ... Y T

Figure 6.2: A causal time series graph for sequential decision making.

applicants’ profile features in Xt+1 such as the credit score, which in turn affect the outcomes

of their subsequent loans.

6.3.2 Formulate Long-term Fairness

To formulate long-term fairness, the model deployment can be mathematically simu-

lated by soft interventions on Y at all time steps until T [30]. That is, given a decision model

hθ, we use it to replace the original structural equation associated with Y in the SCM. We

denote the soft intervention by σY t=hθ(S,Xt) and abbreviate it as σθ. Then, the influence of the

model deployment on feature Xt can be described by its interventional distribution, denoted

by P (Xt(σθ)). To define long-term fairness, we focus on the interventional distributions of

XT conditioning on the advantaged and disadvantaged groups. The rationale behind this is

to treat the profile features X as the representation of the qualification or the reputation of

an individual [24, 22, 23]. As a result, long-term fairness is achieved when the disparity in

the qualification between the advantaged and disadvantaged groups is eliminated after the

model deployment. For example, we say that the loan system achieves long-term fairness if

it could eliminate the disparity in the credit score between different race groups at a certain

time step T .
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We use the 1-Wasserstein distance to measure the difference between the two distri-

butions. The reason is presented in the following proposition.

Proposition 1. Denote by d the 1-Wasserstein distance between the feature distributions

of different groups, i.e., d = W (P (x|c+), P (x|c−)). For any decision model h : X 7→ A that

is Lipschitz continuous, its DP is bounded by lh · d where lh is the Lipschitz constant of

h. If we assume that the true label is given by another decision model g : X 7→ A that is

Lipschitz continuous and satisfies the equal base rate condition, then the EO of h is bounded

by (lh + lg)/P (y) · w where lg is the Lipschitz constant of g.

Proof. According to the definition of DP, we have

DP(h) = |E[h(x)|c+]− E(h(x)|c−)|.

Due to the Kantorovich–Rubinstein duality [95], it is straightforward that

DP(h) ≤ sup
∥h∥≤lh

[
Ex∼P (x|c+)[h(x)]− Ex∼P (x|c−)[h(x)]

]
= lh ·W (P (x|c+), P (x|c−)) = lh · d.

On the other hand, we have

EO(h) = |E[h(x)|a = 1, c+]− E(h(x)|a = 1, c−)|.

Due to the assumption that the true label is given by g and g satisfies the equal base rate
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condition, it follows that

E[h(x)|a, c] =
∫
x

h(x)P (x|a, c)dx =

∫
x

h(x)P (x|c)P (y|x, c)
P (y|c)

dx

=

∫
x

h(x)P (x|c) g(x)
P (y)

dx =
1

P (y)
Ex∼P (x|c)[h(x)g(x)].

In addition, define f(x) = h(x)g(x) and denote the Lipschitz constant of f as lf . It is easy

to show that lf ≤ lh · supx |h(x)| + lg · supx |g(x)|. Since h(x) ≤ 1 and g(x) ≤ 1, we have

lf ≤ lh + lg. As a result, we have

EO(h) ≤ lh + lg
P (y)

W (P (x|c+), P (x|c−)) = lh + lg
P (y)

· d.

Thus, based on the proposition 1, we obtain the long-term fairness metric defined as

follows.

Definition 15. Given a sequential decision making system, a decision model hθ : S×X 7→ Y,

and a time step T , the metric for measuring the long-term fairness produced by deploying hθ

is given by

JT1 (θ) ≜ W (P (XT (σθ)|S = s+), P (XT (σθ)|S = s−)), (6.1)

where W is the 1-Wasserstein distance and σθ is the soft intervention.

Definition 16. Long-term fairness is achieved by a decision model hθ at time T if JT1 (θ) = 0.

Note that although our long-term fairness metric bounds the fairness of the decision

model that does not take any sensitive feature as the input, we allow the decision model hθ

that is to be deployed to take the sensitive feature in order to reduce the disparity between
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the distributions of the two groups. Meanwhile, as will be discussed in the next section,

we also consider short-term or local fairness constraints as they may be enforced by law or

regulations [96].

6.4 Deep Generative Framework for Achieving Long-term Fairness

In this section, we formally formulate the problem of building the decision model to

achieve long-term fairness. We then describe the overview of the proposed three-phase deep

generative framework, followed by the details of each phase.

6.4.1 Problem Formulation

In the problem formulation, first, the decision model should make accurate predictions

for good utility performance. Typically, loss functions such as the cross-entropy loss are used

to penalize inaccurate predictions. In this chapter, we adopt the traditional definitions of

the loss function. The loss J2 defined over the training time series is given as follows.

Definition 17. Given a time series D = {(S,Xt, Y t)}lt=1, the loss for the decision model hθ

is given by

J2(θ) ≜
1

l

l∑
t=1

E[L(hθ(S,Xt), Y t)], (6.2)

where L is any loss function.

Second, as mentioned above, local fairness constraint needs to be required at each

time step to restrict the local bias. For the local fairness constraint, we consider the direct

discrimination [17] of the decision model hθ which is enforced on each time step from 1 to T

as given below.
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Definition 18. The local fairness constraint for each time step t ∈ [1, T ] is given by

J t3(θ) ≜ |E[hθ(S = s+,Xt(σθ))|S = s−]− E[hθ(S = s−,Xt(σθ))|S = s−]|. (6.3)

So far, we have considered three factors in the optimization and there are trade-

offs between each pair of factors. First, there is a trade-off between the local fairness and

the accuracy of the model. This is because if in the training data the decision was made

with biases against a certain group, then, a decision model built upon the training data for

maximizing the accuracy only will inherit the historical biases by learning from the training

data and violate the local fairness constraint. The trade-off between the local fairness and

accuracy has been studied in many previous works [97, 98]. Similarly, achieving long-term

fairness may be at the cost of accuracy if the training data contain historical biases. In

addition, there may exist trade-offs between the long-term and local fairness. For example,

making loan decisions exactly according to the credit score is reasonable in terms of local

fairness, but might not help in narrowing the gap in credit scores between advantaged and

disadvantaged groups. On the other hand, reducing the gap by favoring the disadvantaged

group can raise the potential issue of reverse discrimination, which may violate the local

fairness constraint.

According to the above analysis, we formulate the objective of the problem by sum-

marizing all three factors, leading to the problem formulation below.

Problem Formulation 4. The problem of long-term fair decision-making is to solve the

optimization problem:

min
θ
L(θ) = λ1J

T
1 (θ) + λ2J2(θ) +

λ3
T

T∑
t=1

J t3(θ), (6.4)
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where λ1, λ2 and λ3 are weight parameters.

6.4.2 Overview of the Proposed Framework

There are two main challenges in solving Problem Formulation 1. First, as shown in

Eqs. (6.1) and (6.3), the computation of JT1 (θ) and J t3(θ) are based on the interventional

variants of features Xt(σθ) whose values in turn depend on the model parameter θ. Second,

JT1 (θ) and
∑T

t=1 J
t
3(θ) are computed on time steps that are beyond the range of the training

data since T > l. Thus, Problem Formulation 1 cannot be solved by the traditional machine

learning framework.

We propose a novel three-step framework based on causal inference techniques and

deep generative networks. The main idea is to use a deep generative network to simulate an

SCM for generating both observational and interventional distributions. It has been proven in

[99] that if the structure of a generative network is arranged to reflect the causal structure,

then it can be trained with the observational data such that it will agree with the same

SCM in terms of any identifiable interventional distributions. In addition, it has been shown

that the interventional distribution produced by any soft intervention is identifiable in a

Markovian SCM [69]. These previous results have established the theoretical ground for our

method.

We illustrate our framework using the example shown in Figure 6.2. In this example,

the causal structure at each time step can be mathematically described by two structural

equations of the SCM:

Y t = fY
(
S,Xt, UY

)
, (6.5)

Xt = fX
(
S,Xt−1, Y t−1, UX

)
, (6.6)
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Figure 6.3: The overview of the proposed framework. Solid arrows represent input, and the
dashed arrow represents parameter sharing. For Phase 3 only one generator is shown.

where UY , UX are exogenous variables. Note that due to the stationarity assumption, fY

and fX are time-independent. According to the principle of independent mechanisms [100],

these two structural equations can be learned independently without affecting each other.

Motivated by this principle, in Phase 1, we first train a classifier hω on the training time

series D to approximate fY and make decisions for each time step. Then, in Phase 2, we train

a recurrent conditional generative adversarial network (RCGAN) [92] on the same training

time series D using adversarial training. The generator of the RCGAN uses hω obtained

in Phase 1 for generating decisions. Finally, in Phase 3, we replace hω with the decision

model hθ and train it on the data generated from the RCGAN using the objective function

Eq. (6.4). The overview of the framework is shown in Figure 6.3 and the pseudo-code is

shown in Algorithm 2. Next, we describe the details of each phase.

6.4.3 Phase 1: Train a Decision Classifier

The objective of this phase is to learn a classifier hω from the training time series to

approximate the mechanism fY in Eq. (6.5) for making decisions, i.e., Ŷ t = hω(S,X
t). In

this phase, we train the classifier by maximizing the accuracy only and do not consider any
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Algorithm 2: DeepLF

Input : Dataset D = {(S,Xt, Y t)}lt=1, time-lagged causal graph G,
parameters λ1, λ2 and λ3

Output: The fair model hθ

1 Train a classifier hω by minimizing Eq. (6.7) on D;
2 repeat
3 Update the discriminator Dϕ according to Eq. (6.12);
4 Update the generator Gψ,ω with the classifier hω as one of its components

according to Eq. (6.13);
5 until convergence;
6 i← 0;
7 Initialize hθ0 according to hω;
8 repeat
9 Generate time series using generator Gψ,ω;

10 Compute ∇θLl(θ) according to Eq. (6.4) using the generated data;
11 θi+1 ← θi − ηi∇θLl(θi);
12 i← i+ 1;

13 until convergence;
14 return hθi ;

fairness requirement. Since fY does not change with time, we aggregate the losses at all time

steps in the loss function. Specifically, we use the cross-entropy loss for classification, and

the loss function for training hω on time series D is given by

min
ω
Lc(ω) = −

1

l

l∑
t=1

E
[
Y t log hω(S,X

t)
]
. (6.7)

6.4.4 Phase 2: Train an RCGAN

We then train an RCGAN to simulate the distribution shift in features X, which

generates the data together with the classifier hω obtained in Phase 1. We design the archi-

tecture of the RCGAN following the structural equation Eq. (6.6). As a result, according

to [99], when the generated data fit the distribution of the real data, the model can also

generate interventional data that agree with the same SCM. This is critical for training the
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Figure 6.4: The architecture of the RCGAN.

long-term fair decision model in Phase 3 as long-term fairness is defined on the interventional

distribution under the soft intervention.

The architecture of the RCGAN is illustrated in Figure 6.4, which consists of one

generator and one discriminator. For efficiency, we use the gated recurrent unit (GRU) [101]

as the core structure of the generator and discriminator. For the generator, it takes the

sensitive feature S, a set of noise vectors Z, as well as the features at the first time step

X1 as the input. The hidden state is then initialized by a non-linear transformation (e.g., a

multi-layer perceptron) of X1:

h1 = MLP
(
X1

)
. (6.8)

Then, for each time step t, we concatenate the noise vector Zt−1 with the conditional infor-

mation Ŷ t−1 and S as the input to each GRU. After the calculation of GRU, we again use

a non-linear transformation to convert the hidden states ht to predicted X̂t+1. These three
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steps are shown by the three equations below.

It−1 ←
[
Ŷ t−1, S,Zt−1

]
, (6.9)

ht = GRU
(
It−1,ht−1

)
, (6.10)

X̂t+1 = MLP
(
ht
)
. (6.11)

We also use GRUs for the discriminator to distinguish between generated data and

real data. For the generated time series, the discriminator attempts to predict label 0 for

each time step, and vice versa, for the real time series, the discriminator attempts to predict

label 1 for each time step.

Finally, for training the generator and discriminator, in addition to the objective of

the original GAN for minimizing the likelihood of generated data given by the discriminator,

the maximum mean discrepancy (MMD) [102] between original data and generated data is

also explicitly minimized. The MMD brings two distributions together by comparing their

statistics. As a result, the loss functions of the discriminator and the generator are shown

below, which are optimized alternatively.

max
ϕ
Ld(ϕ) = EX[log(Dϕ(X))] + EZ[log(1−Dϕ(Gψ,ω(S,Z,X

1)))], (6.12)

min
ψ
Lg(ψ) = EZ[log(1−Dϕ(Gψ,ω(S,Z,X

1)))] + γMMD(X, Gψ,ω(S,Z,X
1)), (6.13)

where Dϕ represents the discriminator, Gψ,ω represents the generator that uses hω as the

classifier, and γ controls the strength of the regularization.
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6.4.5 Phase 3: Train the Long-term Fair Decision Model

At last, we train a decision model hθ on the data generated by the RCGAN using the

objective function Eq. (6.4). We use the generator obtained in Phase 2 as well as a variant of

this generator where the former is for generating the observational distribution and the latter

is for performing the soft intervention and generating interventional distribution. Specifically,

we first directly apply the generator Gψ,ω obtained in Phase 2 to generate data for time steps

from 1 to l which are used to compute J2(θ) in Eq. (6.2). Then, we perform soft intervention

σθ by replacing hω with hθ to obtain a variant generator Gψ,θ which is used to generate

data for time steps from 1 to T for computing JT1 (θ) in Eq. (6.1) and J t3(θ) in Eq. (6.3). In

other words, we use Gψ,θ to generate the interventional data Xt(σθ). Finally, the loss L(θ)

is computed and hθ is updated accordingly. Note that the RCGAN trained in Phase 2 will

not be updated in this phase.

It is important to note that when we use the RCGAN to generate data samples

for computing L(θ), those data samples are affected by hθ as well, due to the fact that

hθ is trained on the interventional distribution after performing soft intervention σθ. Such

optimization problem is called the performative risk minimization [83] and cannot be solved

using traditional empirical risk minimization. In our work, we adopt the repeated gradient

descent algorithm (RGD) [83] which is an iterative training approach to address this problem.

In the training process of Phase 3, we first initialize hθ according to hω. Then, in each

iteration, we use the current version of hθ for generating data and computing the empirical

loss, and hθ is updated based on the empirical gradient ∇θL(θ). After that, we replace hθ

with its updated version and conduct another iteration of training. This process is repeated

until the parameters of hθ converge.
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6.5 Experiments

In this section, we conduct empirical evaluations of our method. We refer to our

method as deep long-term fair decision making (DeepLF).

6.5.1 Baselines

A multi-layer perceptron (MLP) that is trained on the training time series D without

any fairness constraints is used as the first baseline. Two common static fairness constraints,

i.e., demographic parity and equal opportunity, are applied to the MLP model as fairness

constraints respectively, referred to as MLP-DP and MLP-EO. We also implement the

most relevant method proposed in [30] where a logistic regression model is trained with

long-term and short-term fairness constraints using the repeated risk minimization [83],

referred to as LRLF.

6.5.2 Datasets

Many commonly used datasets in fair machine learning [103] are not for dynamic fair-

ness research. In [104], the authors construct a dataset that spans multiple years and allows

researchers to study temporal shifts in the distribution level. However, our study requires

the longitudinal data that track each instance over time, other than multiple datasets with

temporal distribution shifts. Thus, following [30], we generate synthetic and semi-synthetic

time series datasets as follows.

6.5.2.1 Synthetic Dataset.

We generate the synthetic time series dataset based on the causal time series graph

shown in Figure 6.2. Each sample at each time step in the time series includes a sensitive
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feature S, profile features Xt and a decision Y t. The samples at the initial time step X1, Y 1

are generated by calling the data generation function (i.e., make classification) of scikit-learn

package. Then, we cluster the generated samples into two groups and assign S to each sample

according to the cluster it belongs to. To generate the data samples in the remaining time

steps, we design a procedure by simulating the bank loan system in the real world. We first

train a neural network classifier hθ∗ on S,X1, Y 1 and treat it as the ground-truth model. For

each time step t, classifier hθ∗ takes as inputs S andXt and outputs a probability distribution

over Y t. We then sample Y t from the distribution as shown below:

P (Y t) = hθ∗(S,X
t) Y t ∼ Bernoulli(P (Y t)) (6.14)

After that, we update the value of Xt to obtain Xt+1 based on the value of Y t. We treat

Y t as the ground-truth of loan repayment (Y t = 1) and default (Y t = 0). An individual

with Y t = 1 should have a larger probability to be predicted as 1 in the next time step, and

vice versa. Therefore, we update the value of Xt according to the value of Y t as well as the

gradient of a loss function between the predicted probability and label 1, as given below:

Xt+1 = Xt − ϵ · (2Y t − 1) · ∂L(hθ
∗(S,Xt),1)

∂Xt
(6.15)

where the parameter ϵ controls the magnitude of changes in Xt. As a result, Xt+1 will be

predicted closer to label 1 if Y t = 1, and will be predicted further from label 1 if Y t = 0.

Following above generation rules, we generate a 10-step synthetic time series dataset with

10000 instances and Xt is 6 dimensional vector. We refer to this dataset SimLoan.
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6.5.2.2 Semi-Synthetic Dataset.

We also generate semi-synthetic data by leveraging the real-world Taiwan dataset [91]

as the initial data at t = 1. A ground-truth classifier and similar generation rules of change

are used to generate subsequent decisions Y 1, ..., Y l and profile features X2, ...,Xl. There are

10000 instances in the initial data and they are randomly and equally sampled from groups

by S and Y for balance. Like the SimLoan dataset, this dataset is also made up of 10 steps.

We refer to this dataset Taiwan.

6.5.3 Implementations Details and Hyperparameters

Experiments are performed on the computer with Intel Core i7-9700K CPU and

NVIDIA GeForce GTX 1180 GPU. Except for LRLF, other baselines and our framework

are used multi-layer fully-connected networks, i.e., MLP, as the classifiers. The details of the

model architectures and hyperparameters used in our framework on two datasets are given in

Tables 6.1 and 6.2. For a fair comparison, we adopt the same network structure and parameter

settings for our decision model hθ. Both datasets are split into train/validation/test sets with

the ratio 70/10/20. The models are trained on the train sets and the hyperparameters are

chosen on the validation sets. The reported results are calculated on the test sets.

6.5.4 Evaluation

To evaluate the performance of models after deployment, the RCGAN trained in

Phase 2 and the decision models that we evaluate are used together to generate interven-

tional data on which the local and long-term fairness are computed. The long-term fairness

is measured by Eq. (??) computed on the evaluated decision model; the local fairness is

measured by the direct discrimination [17] at each time step; and the accuracy of predictions
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Table 6.1: The architectures of hω and hθ and hyperparameters for both datasets

Layer Inputs
Output Dim

SimLoan Taiwan

X 6 6

S 1 1

FC 1 [X, S] 32 16

FC 2 FC 1 64 32

FC 3 FC 2 1 1

Optimizer Adam

Learning rate 0.001

Batch size 512

λ1 1.0 1.0

λ2 128.4 40.0

λ3 21.0 20.0

Table 6.2: The architecture of RCGAN and hyperparameters for both datasets

Layer Inputs
Output Dim

SimLoan Taiwan

X/Z 6 6

S/Y 1 1

Generator

GRU 1 [Z, S, Y] 64 64

GRU 2 GRU 1 64 64

FC 1 GRU 2 6 6

Penalty

MMD [X, FC1] 1 1

Discriminator

GRU 1 FC 1 64 64

GRU 2 GRU1 64 64

FC 1 GUR 2 1 1

Opimizer Adam

Learning rate 0.001

Batch size 512

γ 100
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Figure 6.5: T-SNE visualization of real and generated data distributions.

is evaluated based on the ground-truth classifier hω at each time step.

6.5.5 Results

6.5.5.1 Performance of RCGAN.

The quality of the time series generated by the RCGAN is crucial for our model

training and evaluation. To demonstrate the fidelity of the generated data, we leverage the

T-SNE technique [105] to provide the visualization of complex distributions. Figure 6.5 shows

the results of T-SNE visualization of real and generated data distributions. As we can see,

the real and generated data after dimensionality reduction have very similar structures of

data, which verifies the performance of the RCGAN.

6.5.5.2 Fairness and Accuracy of Decision Models.

To evaluate the performance of our algorithm and baselines, we conduct experiments

with two settings on both SimLoan and Taiwan datasets. In the first setting, the time step

T for achieving long-term fairness is set to 10. We train the models on the 10-step training

data (i.e., within the time range [1, 10]) and evaluate the models on the 10-step generated

datasets with X1 as input (i.e., also within the time range [1, 10]). The results of accuracy
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Figure 6.6: Accuracy, local and long-term unfairness of different algorithms on SimLoan ((a)
and (b)) and Taiwan ((c) and (d)) datasets. The decision models are trained on generated
data within the time range [1, 10]. (a) and (c): Results of evaluation on generated data within
time range [1, 10]. (b) and (d): Results of evaluation on generated data within the time range
[10, 19].

and unfairness of all algorithms on the two datasets are shown in Figures 6.6 (a) and (c). We

can see that the local and long-term unfairness of our algorithm have the obvious tendency

to decline over time and reach low levels at t = 10. The trend in the figures shows how

our algorithm achieves long-term fairness over time. For LRLF, it also produces relatively

small local and long-term unfairness at t = 10 as expected, but its accuracy is much lower

than that of our algorithm, probably due to the capacity of the logistic regression model.

For the other three baselines, there is no clear decreasing trend in both local and long-term

unfairness, although a relatively higher level of accuracy is achieved. This result verifies the

impossibility result in the previous work which shows that static fairness constraints cannot

guarantee long-term fairness [24, 23].
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(a) SimLoan Dataset

(b) Taiwan Dataset

Figure 6.7: T-SNE of generated data distributions at time step t = 10 produced by MLP
(left) and DeepLF (right).

To demonstrate how our algorithm produces a fair qualification distribution, we adopt

T-SNE to visualize the distributions of X10 produced by MLP and DeepLF, as shown in

Figure 6.7. It can be seen that compared with the distribution obtained by using the MLP

as the decision model (left figures), the data samples of two groups (s = 0, 1) produced by

DeepLF (right figures) are more evenly mixed together which implies a fairer qualification

distribution.

In the second setting, the time step T for achieving long-term fairness is set to 19.

We train the decision models on the same training data as in the first setting but evaluate

the models on the 10-step generated data with X10 as the input, i.e., the generated data

within the time range [10, 19]. The difference between the two settings is that in the first

setting we pretend that we could modify the decision model in the past period during which
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the training data were generated, while in the second setting we only modify the decision

model that will be deployed in the future (i.e., starting from t = 10). The results are shown

in Figures 6.6 (c) and (d). In general, we observe similar results to the first setting where

our algorithm achieves the best fairness performance compared with the baseline methods.

6.6 Summary

In this chapter, we proposed a three-phase deep generative framework to achieve

long-term fairness by training an RCGAN to predictively generate observational and inter-

ventional data. Leveraging the causal time series graph and independent mechanism, we

trained a classifier hω on the time series D in the first phase and trained an RCGAN in

which the hω is used to generate decisions in the second phase. In the last phase, we trained

a fair decision model with 1-Wasserstein distance as the long-term fairness constraint and

direct discrimination as the local fairness constraint. The optimization was formulated as a

performative risk minimization and solved by the repeated gradient descent algorithm. Ex-

periments on both synthetic and semi-synthetic time series datasets showed that our method

can achieve a balance among long-term fairness, local fairness, and accuracy.
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7 Achieving Long-term Fairness for Dynamic Systems Through

Reinforcement Learning

7.1 Introduction

How to achieve long-term fairness has been explored in previous studies through

explicit modeling of dynamics and feedback loops. One branch of research is to investigate

the impact of current decisions on a target population in application-specific scenarios by

leveraging various analytical frameworks, such as the one-step feedback [106] or Pólya urn

model [25]. There are analytical results that show that simply enforcing traditional fairness

notions at each static decision point may produce adverse effects on disadvantaged groups in

the long run [24, 23]. Long-term fairness has also been studied in the context of reinforcement

learning (RL) where the system dynamics and feedback loops between decisions and the

population are formulated through a Markov Decision Process (MDP) [107]. Following this

line of research, [48, 108] establish simulation environments for studying long-term fairness

in RL, based on which RL algorithms have been used to learn a decision-making policy that

aims to optimize both policy utility and fairness as long-term objectives [31, 50]. However,

one limitation of existing methods is that they usually formulate long-term fairness as the

difference between the average or instantaneous rewards received by different demographic

groups similar to static fairness notions, but do not take into account the inherent difference

between traditional fairness notions and long-term fairness requirements.

In this chapter, we consider long-term fairness as a requirement on the states rather

than the rewards following the definitions in some well-accepted research [24, 22, 23]. We ac-

knowledge that traditional fairness notions and long-term fairness are distinct requirements
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that may not necessarily align with one another. Traditional fairness considers the equity of

the outcomes or performance of the decision model at a single decision point. It is referred to

as short-term fairness later in this chapter for a clear representation. Long-term fairness, on

the other hand, refers to a long-term state in which equity is systematically satisfied. Such a

state may be achieved by gradually reducing the gap between the qualification distributions

of different groups. As a result, imposing short-term fairness constraints may not necessarily

lead to long-term fairness even if the constraints are incorporated into a long-term objective.

For example, suppose a bank uses different thresholds for making loan decisions for the ad-

vantaged and disadvantaged groups in order to ensure fair outcomes. However, this approach

may not help narrow the gap between the credit score distributions of the two groups.

To address the above issue, we develop an algorithmic framework that promotes both

short-term and long-term fairness simultaneously. Similar to prior works, we utilize the MDP

framework to leverage its power in optimizing long-term objectives. By recognizing the dis-

tinct requirements of short-term and long-term fairness, we incorporate them into the RL

algorithm using different approaches. Since the concept of long-term fairness is aligned with

the principle of the MDP framework, we employ an in-processing approach to deal with

this constraint. We adopt the 1-Wasserstein distance as the metric of the distribution gap

and theoretically show that minimizing the distance can lead to a long-term fair state. On

the other hand, we adopt a model-agnostic pre-processing approach to deal with short-term

fairness to ensure that it is enforced throughout the sequential decision-making process. We

extend a classic pre-processing approach called massaging [109] to the RL setting by integrat-

ing it with the policy optimization algorithm. Finally, we show the exact implementation of

our algorithmic framework using three case studies, where the experimental results demon-

strate that our method is capable of striking a desired balance between short-term fairness,
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long-term fairness, and the utility of the sequential decision system.

We summarize our contributions as below:

• We propose to achieve systematic equity in sequential decision-making by considering

short-term and long-term fairness as distinct fairness requirements.

• We develop an efficient and flexible algorithmic framework that integrates short-term

and long-term fairness with the MDP framework as distinct constraints.

• Three case studies within simulation environments are used to prove the effectiveness

of our method by evaluating the performance of our method and comparing it with

the state-of-the-art baselines.

7.2 Preliminaries

This section introduces the background and preliminaries of fair machine learning,

reinforcement learning (RL), and proximal policy optimization (PPO), a prevalent policy

optimization algorithm in RL.

7.2.1 Fair Machine Learning

The issue of fairness has become one of the most popular topics in machine learn-

ing in recent years. To measure fairness in algorithmic decision-making, a large number of

fairness notions have been proposed in the literature. Typical examples include demographic

parity (DP) and equal opportunity (EO). DP aims to ensure that different demographic

groups are represented proportionally in the outcomes of a decision model. EO, on the other

hand, refers to the principle of treating individuals or groups fairly by ensuring equal error

rates or predictive performance across different demographic subgroups. Then, to address
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the fairness issues, bias mitigation algorithms are proposed mainly from three perspectives:

pre-processing, in-processing, and post-processing. Pre-processing approaches focus on elim-

inating bias from the training data (e.g., [32, 33, 34]), in-processing approaches aim to avoid

introducing bias in model training by proposing new model structures or loss functions (e.g.,

[110, 111, 60]), and post-processing approaches modify predicted outcomes to resolve fairness

issues (e.g., [79, 98, 44]).

7.2.2 Reinforcement Learning

Reinforcement learning consists of two interactive components, an agent and an envi-

ronment, which interact with each other over time. This interaction process is modeled as a

Markov decision process (MDP) [26]. An MDP is denoted by a tupleM = (S,A, P, R, ρ0, γ),

where S ∈ S is a set of states, A ∈ A is a set of actions, P : S × A × S → [0, 1] is a

transition function that represents the probability of next state given the current state and

the action, R : S → R is a reward function, ρ0 : S → [0, 1] is an initial state distribution, and

γ ∈ [0, 1] is a discount factor. At each time step t, the agent observes a state st ∈ S from the

environment and takes an action at ∈ A following a policy π : S → A based on the current

state. Then the agent observes a new state st+1 ∈ S and a reward rt ∈ R generated by the

environment with the transition probability P (st+1|st, at) and the reward function R(st) in

the next time step t+1. The goal of RL is to learn a optimal policy πθ which maximizes the

expected discounted cumulative rewards, defined as below.

J(θ) = Eτ∼πθ

[
∞∑
t=0

γtR(st)

]
,

where τ = (s0, a0, s1, a1, ...) is a trajectory and τ ∼ πθ means that a trajectory τ is sampled
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from the policy πθ following s0 ∼ ρ0(s0), at ∼ π(at|st), st+1 ∼ P (st+1|st, at).

To address the RL problem, there are several concepts that are often involved in RL

algorithms. Let R(τ) denote the discounted cumulative rewards of a trajectory τ . The state

value function V and the state-action value function Q are given by V (st) = Eτ∼π[R(τ)|st =

s] and Q(st, at) = Eτ∼π[R(τ)|st = s, at = a], which evaluate how good a state or a pair of

state and action is. The advantage function is the difference between Q(st, at) and V (st),

i.e., A(st, at) = Q(st, at)−V (st), and it can be considered as the advantage of taking a given

action over following the policy [112].

7.2.3 Proximal Policy Optimization

Policy optimization methods [113] are a type of reinforcement learning algorithms

that improve policies directly by estimating policy gradients and optimizing with stochastic

gradient ascent. The most commonly used form of gradient estimator is given by

∇J(θ) = E(st,at)∼πθ [A(st, at)∇θ log πθ(at|st)] (7.1)

where the expectation is estimated over a batch of samples.

Proximal policy optimization (PPO) [114] is a state-of-the-art policy optimization

algorithm stemming from the trust region policy optimization (TRPO) algorithm [115]. It

maximizes a clipped surrogate function to prevent the gradient update dramatically, as

follows

JCLIP(θ) = Ê [min(rt(θ)At, clip(rt(θ), 1− ϵ, 1 + ϵ)At)] (7.2)

where At is short for A(st, at), rt(θ) denotes the probability ratio πθ(at|st)
πθold (at|st)

, and ϵ is a hy-

perparameter. To compute variance-reduced advantage function, a neural network is used to
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estimate the state value function V (st) with the squared-error loss

LV (θ) = E[(Vθ(st)−R(τ))2] (7.3)

The clipped surrogate function restricts the magnitude of the gradient update, which not

only makes the algorithm more stable, but also allows for multiple updates using a batch of

samples, improving the data efficiency.

In this chapter, we adopt PPO as the RL algorithm, but our method can be applied

to any policy optimization algorithms.

7.3 Problem Formulation

To develop an RL algorithm for achieving long-term fairness, we start by defining

fairness notions in the context of sequential decision-making, presenting the problem formu-

lation, and establishing the setting of the fair RL learning problem.

7.3.1 Fairness Definition for Sequential Decision Making

As stated in the last section, traditional fairness notions are usually concerned about

whether the machine learning model produces the same outcome or performance across

different groups in a static population. In the context of sequential decision-making, we refer

to this type of notions as short-term fairness notions, which are defined based on a cohort

of individuals who participate in the decision-making system over a specific period.

Definition 19 (Short-term Fairness). In a sequential decision-making system, short-term

fairness is defined as the equal outcome or performance of the decision model/policy over a

participating cohort.
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It is worth emphasizing that, first, short-term fairness notions may be enforced by

laws and regulations in some domains, such as the U.S. Equal Employment Opportunity

Commission [116] that prohibits employment discrimination. So, it is essential to enforce

short-term fairness throughout the sequential decision-making process including both train-

ing and evaluation. Second, different short-term fairness notions may conflict and not be

achieved simultaneously if historical and/or systemic biases exist [117]. For example, achiev-

ing demographic parity may require preferential treatment to account for historical disadvan-

tages, which could potentially impact equal opportunity. Thus, we adopt a single short-term

fairness notion only in our algorithm.

On the other hand, long-term fairness has been proposed to account for fairness and

equity of the sequential decision-making system in the long run [24]. The general goal of

long-term fairness is to reach a state where the historical disadvantages are rectified and

systemic biases are removed. Since the trade-off between short-term and long-term fairness

is due to historical disadvantages and systemic biases, we presume that long-term fairness

also implies a state in which it becomes easier to simultaneously satisfy different short-term

fairness notions.

How to quantify long-term fairness? In the literature, features are regarded

as indicators or metrics that assess the qualification or competency levels of individuals.

Then, long-term fairness is often formulated by measuring the gap in feature distributions

between different groups. For example, in [24], the difference in feature distribution of the

disadvantaged group between the starting time step and the ending time step, i.e., △ =

E[xt=t∗ |c−]−E[xt=0|c−], is defined as the measure of long-term fairness. It is called long-term

improvement if △ > 0, stagnation if △ = 0, and active harm if △ < 0. In [22], long-term

fairness is defined as the parity in the feature distribution between the advantaged and
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disadvantaged group when the dynamic system is at equilibrium, i.e., △ = |E[xt=t∗|c+] −

E[xt=t∗ |c−]|. In this chapter, we adopt a similar philosophy to [22] and define long-term

fairness as follows.

Definition 20 (Long-term Fairness). Long-term fairness is defined as the equal feature

distributions of different groups at a long-term state of the sequential decision-making system.

After discussing the two types of fairness we consider, we define our problem formu-

lation as follows.

Problem Formulation 5. Consider a sequential decision-making context. A policy for mak-

ing the decision is learned through an iterative process of interaction with the environment.

Our goal is to learn a fair policy such that: (1) short-term fairness is guaranteed throughout

both the training and evaluation processes, and (2) a long-term fair state is reached at the

end of the evaluation process.

7.3.2 Problem Setting for Fair RL

To formulate the problem of long-term fair sequential decision-making, we consider

a finite-horizon RL problem and leverage the MDP framework. Specifically, in our context

states S = C × X where C is the domain of the sensitive feature and X ∈ Rm represents

the domain of the profile features. When C is a binary domain, we use {c+, c−} to represent

the advantaged and disadvantaged groups respectively. Let A denote the action space. If A

is a binary domain, we use {1, 0} to represent the positive and negative actions. Our goal

is to learn a stochastic policy πθ : S → A which maximizes the agent’s cumulative reward

while satisfying certain fairness criteria. Note that we generally allow the sensitive attributes

to be involved in the policy input and will explicitly adopt constraints to enforce fairness
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requirements.

We may use the bank loan system as an example to illustrate this problem setting in

a real-world scenario. In this example, the bank is treated as the agent, and the population

of the applicants is treated as the environment. Assume that the sensitive attribute C is the

race of the applicant. As an RL process, at each time step t, an individual from a certain race

group is sampled and applies for a loan from the bank, whose state st is given by race ct and

personal profile xt. Then, the bank runs a policy function πθ to decide whether to approve

the loan according to probability distribution πθ(at|st). If the loan is approved, depending on

whether the individual repays the loan, both the bank’s profit and the feature distribution

of the population will be affected which determines the new state and the reward. Finally,

the goal of the bank is to learn from interactions a lending policy that maximizes its own

profit while satisfying fairness.

7.4 Algorithm

In this section, we develop a flexible and effective fair RL algorithm that integrates the

pre-processing and in-processing approaches to promote short-term and long-term fairness

simultaneously. We assume separate training and evaluation processes where the policy is

updated according to the interaction experience with the environment during the training

process, and it is further evaluated in a separate environment with the same dynamics after

the training completes. However, our method is readily applied to the setting where the

evaluation is conducted during the training. In the following, we first provide an overview of

the algorithm.
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7.4.1 Overview

When developing the fair RL algorithm, it is critical to consider the different require-

ments for long-term and short-term fairness. Long-term fairness is a state that represents

the maximization of the equity of the system in the long run. As it is aligned with the prin-

ciple of the MDP framework that maximizes the expected total reward over time, we adopt

an in-processing approach that regularizes the reward to incorporate the long-term fairness

objective so that the RL algorithm can be aware of the long-term fairness status in training.

Specifically, we regularize the advantage function of a policy optimization algorithm as:

Aλ(st, at) = A(st, at) + λR(st), (7.4)

where R(st) is the regularization that reflects the long-term fairness requirements and λ is a

hyperparameter that controls the degree of regularization.

On the other hand, short-term fairness is an instantaneous constraint that may be

enforced by laws or regulations at every step of the decision-making. Merely incorporating

short-term fairness through regularizing the advantage function may not be sufficient to

guarantee short-term fairness throughout the entire training process. Thus, we choose to

adopt a pre-processing approach to address this issue. Inspired by the classic pre-processing

approach named massaging [109], we propose a method called action massaging that selec-

tively alters unfair actions produced by the policy network to fair ones. Specifically, after

an action at is sampled from the policy network πθ at time step t, we employ a functional

mapping a′t = m(st, at) where a
′
t may or may not be equal to at to generate the trajectory.
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By using this altered trajectory to perform policy optimization, the policy gradient becomes

∇J(θ) = E(st,at)∼πθ [A
λ(st, a

′
t)∇θ log πθ(a

′
t|st)], (7.5)

which shows that the policy gradient is computed based on the trajectory formed by a′t.

The rationale of the action massaging is to perform fair actions when the policy network

generates biased ones and also encourage the policy to generate fair and high-reward actions.

Note that this approach differs from the off-policy RL learning algorithm which optimizes

the current policy network based on the trajectories generated by a different policy, and

hence our approach does not require importance sampling to correct for the bias.

Next, we describe the above pre-processing and in-processing components in detail.

7.4.2 Action Massaging for Short-term Fairness

The action massaging altered actions according to a pre-defined short-term fairness

criterion that is to meet legal and regulatory requirements for decision-making and prevent

discrimination against certain groups. As mentioned earlier, we consider group fairness no-

tions such as DP or EO in our work. At each time step t, short-term fairness relies on the

current state and action as well as the past states and actions of the system. To facilitate

computation, we adopt a sliding window w so that all the states and actions between time

step t−w and t form a participating cohort that will be used to measure short-term fairness.

We denote this measure as △s(st, at). Then, the action massaging m(st, at) alters the action

at to a
′
t that minimizes △s(st, at) to improve short-term fairness.

When designing the mapping m(st, at), one principle is that the modifications should

not significantly damage the utility of the policy. In our method, we treat πθ(at|st) as the
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confidence level for selecting action at, and introduce a constraint that limits the differ-

ence between the confidence of the original action at and the altered action a′t. The action

massaging only alters the current action to a different action when the above difference is

smaller than a predefined threshold. When multiple actions satisfy the constraint, the action

massaging chooses the one that leads to best short-term fairness. As a result, the action

massaging is formulated as follows:

m(st, at) = argmin
a′t∈A

△s(st, a
′
t)

s.t. |πθ(at|st)− πθ(a′t|st)| < τ.

(7.6)

The constraint in Eq. (7.6) is an important factor that reflects the trade-off between

short-term fairness and utility. It aids in enhancing short-term fairness while minimizing the

impact on utility. On one hand, the constraint reduces the number of modifications made by

the action massaging, as a large number of modifications will cause instability and deviation

of training. On the other hand, the constraint also restricts the modifications to be carried

out when current actions have low confidence and hence leads to a smaller reduction in

utility. For example, in a special case of binary actions (e.g., the decision of bank loan), the

constraint will restrict the modifications to actions with confidence close to 0.5. The exact

implementation of the action massaging is task-specific and varies with applications, as will

be shown in the case studies in the next section.

7.4.3 Advantage Regularization for Long-term Fairness

The action massaging for short-term fairness is not enough to achieve long-term fair-

ness as the objective of short-term fairness may not exactly align with the objective of long-
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term fairness. As mentioned above, we leverage the MDP’s capacity to maximize long-term

returns as a means to attain long-term fairness. Just as done in Chapter 6, to quantify long-

term fairness, in our work we employ the 1-Wasserstein distance between the distributions

of different groups as the long-term fairness metric.

The proposition 1 in Chapter 6 shows that, by approaching a long-term state where

the 1-Wasserstein distance between the feature distributions of different groups is minimized,

we can mitigate at that state both the DP and EO of any decision model that is Lipschitz

continuous. This implies that a long-term fair state has been reached.

Denote the long-term fairness measure computed at time step t as △l(st). Similar to

short-term fairness, we adopt a sliding window to form a participating cohort for estimating

the feature distributions. Then, we incorporate △l(st) into the advantage function as the

regularization. However, rather than directly adding △l(st) to the advantage function, we

further consider the trade-off between short-term fairness and long-term fairness when the

two objectives are not aligned. Specifically, we promote the advantage when both short-term

and long-term fairness can be improved while demoting the advantage when both short-term

and long-term fairness is damaged. When there is a conflict between short-term and long-

term fairness, we keep the current advantage unchanged. The regularization term is defined

as follows:

R(st) =


min(0,△l(st)−△l(st+1)) △s(st, at) > δ

max(0,△l(st)−△l(st+1)) △s(st, at) ≤ δ

(7.7)

As can be seen, the first term is active when short-term fairness △s(st, at) is larger

than the threshold δ. Then, this term will penalize the original advantage when the long-term
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Algorithm 3: Fair Proximal Policy Optimization (F-PPO)

1 Initialize policy network πθ and value function network vϕ;
2 for k = 0, 1, 2, ... do
3 Collect trajectories Dk from policy πθ where actions at are sampled from

πθ(at|st);
4 Compute △s(st, at) and apply action massaging according to Eq. (7.6) to

obtain altered trajectories;
5 Compute △l(st) and penalized advantage Aλ(st, at) according to Eqs. (7.4)

and (7.7) ;
6 Update the policy by maximizing the clipped surrogate function JCLIP

according to Eq. (7.2);
7 Update the value function network by minimizing the squared-error loss

LV according to Eq. (7.3);

8 end

fairness measure does not decrease at the next time step t+1 compared to the current time

step t. The second term is active when short-term fairness △s(st, at) is less or equal to δ. In

this case, we reward the advantage function when the long-term fairness measure reduces.

This approach allows for a continuous improvement of long-term fairness throughout the

entire sequence, rather than a sudden change at a specific point, while it remains simple and

effective.

Combining the above two methods for fairness, we present the pseudocode of our

algorithm in Algorithm 3, which is referred to as F-PPO.

7.5 Experiments

For demonstrating the performance of our proposed method, we make use of the

simulation environments [48, 108] that implement toy examples of dynamic systems for

supporting studies of long-term consequences of ML-based decision systems. We conduct

three case studies in the context of bank loans, allocation of attention, and epidemic control.

The proposed method is evaluated with respect to utility, short-term fairness, and long-
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(a) The short-term fairness (b) The long-term fairness (c) The amount of bank cash

Figure 7.1: Experimental results for bank loans. The recorded values are averages over 10
evaluation runs.

term fairness. As mentioned earlier, the policies will be first trained by interacting with the

environment and then tested separately in the environment.

Baselines. We consider two different categories of baseline agents in our experiments.

The first category is human-designed policy agents used in [48, 31], including the EO agent for

bank loans, the CPO agent for attention allocation, and the Max agent for epidemic control.

The second category consists of learning-based policy agents. We consider the original PPO

algorithm that only maximizes the cumulative reward, and the A-PPO algorithm that is the

state-of-the-art fair RL algorithm proposed in [31] for achieving fairness through advantage

regularization. As an ablation study, we also consider a variant of our method named F-PPO-

L that only consists of the long-term fairness component but with the short-term fairness

component removed.

7.5.1 Case Study: Bank Loans

In this case study, the bank lending scenario is simulated where an agent plays the

role of a bank to make decisions about whether to grant loans to a stream of applicants.

The qualification of applicants is described by a discrete credit score, which changes with

the loan decisions.
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Environment. In this environment, at each time step the bank observes a loan

applicant st which is sampled with replacement from the pool of applicants. Each applicant

consists of a credit score (qualification feature) and a group membership (sensitive feature).

The group membership ct is uniformly sampled from {c+, c−}. The credit score xt, on the

other hand, is drawn from a group-dependent discrete distribution over X ∈ {1, 2, ..., Xmax}

with Ec− [X] < Ec+ [X]. The bank employs a policy to make binary decisions of whether to

deny or approve loan applications. If a loan applicant receives a loan and defaults, his/her

credit score Ci drops, which is simulated in the distribution by moving a small portion of mass

from Pc(Xi) to Pc(Xi−1) if i ̸= 1. Similarly, if the loan applicant receives a loan and repays, a

small portion of mass will be moved from Pc(Xi) to Pc(Xi+1) if i ̸= Xmax. There is no change

in the distribution if the applicant does not receive the loan. The bank’s profit increases by

the amount of the loan plus the interest on successfully repaid loans, and decreases by the

loan amount on defaults. The probability of default is given by a deterministic function of

the credit score. The reward of the bank at each time step is defined as the change in its

profit at the next time step.

Implementation of F-PPO. In this case study, we implement a policy network

πθ(at|st) to make binary decisions at ∈ {1, 0}. We adopt EO as the short-term fairness

notion, which is defined as follows:

△s(st, at) =

∣∣∣∣∣
∑t

t−w successful loantc+∑t
t−w will repaytc+

−
∑t

t−w successful loantc−∑t
t−w will repaytc−

∣∣∣∣∣ , (7.8)

where w = 300 is the sliding window size. For the action massaging, the action will be

flipped if the alternative action is fairer in terms of short-term fairness and the confidence

of the action is lower than the threshold. The threshold in Eq. (7.6) is dynamically adjusted
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according to the number of training iterations. The idea is to perform a cold start in action

massaging so that the actions are not altered at the beginning of training. The threshold is

initially zero and increases after a certain number of iterations. Specifically, the threshold τ

at the ith iteration is defined as τ = 1− 2τ(i) where

τ(i) =


τs · γi−is i ≥ is

0.5 otherwise

In our experiments, we set τs = 0.5, is = 17, and γ = 0.985. Finally, long-term fairness is

computed as

△l(st) = W (Pt−w:t(X|c+), Pt−w:t(X|c−))

where Pt−w:t(X|c) is the distribution mass of the credit score of group c measured within the

sliding window. For other hyperparameters, we set λ = 1 and δ = 0.05.

Agents. We include PPO, A-PPO, and EO as baselines to compare with our F-

PPO, where EO is the agent that maximizes the bank profits subject to constraints of equal

opportunity at every time step.

Results. The short-term fairness, long-term fairness, and reward obtained by different

agents during the test are shown in Fig. 7.1. As can be seen, despite similar performance

in terms of reward (Fig. 7.1c), the fairness performance of different methods is diverse. For

short-term fairness (Fig. 7.1a), EO, A-PPO and F-PPO are all able to keep the bias values

below 0.1, while the original PPO produces much larger bias values. For long-term fairness

(Fig. 7.1b), our F-PPO approach exhibits superior performance among all the methods

considered, as it consistently achieves the smallest bias values, and these bias values continue

to decrease over time. On the other hand, A-PPO produces the worst performance where
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(a) Bank Loans (b) Attention Allocation (c) Epidemic Control

Figure 7.2: Ablation study: mean and standard deviation of short-term fairness in each
iteration measured during training.

the bias values increase over time. This result shows that simply adding traditional fairness

constraints into a long-term objective does not necessarily achieve long-term fairness. By

combining the three results, we see that our F-PPO algorithm strikes a desirable balance

between short-term fairness, long-term fairness, and utility of the policy.

For the ablation study, Fig. 7.2a shows the mean and standard deviation of short-term

fairness achieved by F-PPO and F-PPO-L in each iteration of the training process over 350

iterations. The results show the effectiveness of the action massaging in maintaining short-

term fairness throughout both the training and evaluation processes, while the long-term

fairness component alone cannot guarantee short-term fairness.

7.5.2 Case Study: Attention Allocation

This scenario aims to simulate incident monitoring and mitigation. In the simulation,

the agent’s role is to assign attention units to a set of locations. Each attention unit can

prevent, or catch, one incident at the location to which it is assigned. The incident rates at

each location vary over time in accordance with the number of incident occurrences as well

as the agent’s decisions on how to assign attention units.

Environment. In the attention allocation environment, let N represent the number
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(a) Short-term fairness (b) Long-term fairness (c) Average rewards

Figure 7.3: Results for the Attention Allocation environment. The recorded values are the
averages over 10 evaluation episodes.

of attention units, and K be the number of locations. At each time step t, the agent assigns

all N units over the K locations and ak,t denotes the number of units assigned to location k.

The number of incidents that occur at each location is sampled from a Poisson distribution

as yk,t ∼ Poisson(Λk,t), where Λk,t is a dynamic parameter which changes according to

Λk,t+1 =


Λk,t + λIk if ak,t = 0

Λk,t − λD · ak,t otherwise.

Here, λIk is the increase rate, which may vary between locations k, and λD is the decrease rate

which is the same across locations. The number of incidents discovered at a location is given

by ŷk,t = min(ak,t, yk,t). The reward is defined as r(st) = ζ0
∑K

k=1 ŷk,t − ζ1
∑K

k=1(yk,t − ŷk,t)

which is determined by the fraction of incidents discovered. The parameters ζ0 and ζ1 weight

the reward function in terms of incidents discovered versus incidents missed. The state st is

an observation history of lengthH and each observation is a tuple of vectors (ŷt, yt, at, ŷt⊘yt),

where ⊘ denotes the Hadamard division operation.

Implementation of F-PPO. The policy network for attention allocation produces

a K dimensional vector of logits which are converted into a probability distribution P (k)
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(a) Short-term fairness (b) Long-term fairness (c) Average rewards

Figure 7.4: Experimental results for epidemic control. The recorded values are averages
over 200 evaluation episodes.

using the softmax function. The action is constructed by iteratively assigning attention units

to the locations until all have been assigned. In each iteration, one attention unit is assigned

to the location with the highest probability, from which the amount of 1
N

is removed before

the next iteration. For short-term fairness, we adopt DP as the metric defined as follows:

△s(st, at) = max
k

∣∣∣∣∣
∑t

t′=t−w ak,t′

N · w
− 1

K

∣∣∣∣∣ , (7.9)

which requires that the number of units assigned should be equal across different locations.

The action massaging checks for each pair of locations k1, k2 where at least one unit is

assigned to k1, if reallocating one unit from k1 to k2 would improve short-term fairness.

To minimize the impact of the action massaging on the utility, the algorithm also checks if

the difference between P (k1) and P (k2) is less than the threshold. When both conditions

are met by multiple pairs, the algorithm selects the one that leads to the best short-term

fairness performance and performs the reallocation. For simplicity, we use a static threshold

of 0.08. Finally, we measure long-term fairness according to the incident distribution over all

locations. In training, we estimate the incident distribution based on the number of incident

occurrences, but in evaluation, we use Λk,t as the ground truth of the incident distribution.
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Agents. For baselines used to evaluate our F-PPO agent, we consider PPO, A-PPO,

as well as the CPO agent that aims to discover the most incidents.

Results. The experimental results are shown in Fig. 7.3. Our F-PPO achieves the

best long-term fairness performance while maintaining relatively low short-term bias values

and high rewards. As a comparison, although A-PPO produces the best short-term fairness

performance, its long-term fairness performance and utility are among the worst. For the

ablation study, Fig. 7.2b shows the effectiveness of the short-term fairness component.

7.5.3 Case Study: Epidemic Control

The third case study simulates an infectious disease scenario where vaccines are al-

located within a social network in a step-by-step manner. At each step, one individual is

selected by the policy to receive the vaccine. Meanwhile, healthy individuals have the chance

to get infected, and sick individuals have the chance to recover. The task is to optimally

allocate vaccines in order to mitigate the spread of disease.

Environment. In this environment, we have a social network G = (V,E) where V is

a set of individuals and E is a set of edges representing social connections. The state of the

environment is a vector of the health state of all individuals. For each individual, the health

state is represented by a four-dimensional one-hot encodingH = {S, I, R} that represents the

three possible states that an individual can be in, including susceptible (healthy), infected,

and recovered. At the initial time step, a random set of individuals V0 are infected. Then,

at each time step t, the probability of a susceptible individual i transitioning to the state

of infected is given by PI(vi,t) = 1 − (1 − τ)|NI(vi,t)|, where NI(vi,t) represents the number

of infected individuals in the neighbor of individual i and τ ∈ [0, 1] is an infectious factor.

Meanwhile, the probability of an infected individual recovering is given by PR(v) = ρ where
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ρ ∈ [0, 1] is the recovering factor. If a susceptible individual receives the vaccine, his/her state

directly transitions from S to R. The reward is defined as the proportion of the population

who are not infected. To study fairness, the Girvan-Newman algorithm [118] is used to

partition the network G into two communities corresponding to groups c+ and c−.

Implementation of F-PPO. The policy network is a multiclass classifier that out-

puts the probabilities of |V |+1 actions representing either not vaccinating or vaccinating any

of the |V | individuals. EO is still adopted as the short-term fairness metric, which measures

the vaccination ratio among newly infected individuals in different groups as follows

△s (st, at) =∣∣∣∣∣
∑t

t−w vaccine giventc+∑t
t−w new infectedtc+ + 1

−
∑t

t−w vaccine giventc−∑t
t−w new infectedtc− + 1

∣∣∣∣∣ .
(7.10)

For the action massaging, at each time step it checks if providing the vaccine to an individual

from the other community would result in a fairer allocation. If this condition is met, the

algorithm proceeds to check if there exists an individual from the other community whose

predicted probability is sufficiently close to that of the current individual. If such an indi-

vidual is found, the algorithm modifies the action accordingly. A dynamic threshold is again

adopted. For the ith iteration, the threshold is defined as:

τ(i) =


min(τe, τs · γi−is) i ≥ is

0 otherwise

Specifically, we set τs = 0.01, τe = 0.35, is = 50, γ = 1.2. Finally, long-term fairness

is measured as the distance between the health states of the two communities. For other

hyperparameters, we set λ = 0.25 and δ = 0.05.
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Agents. We consider the Max agent in addition to PPO, A-PPO, and F-PPO. The

Max agent vaccinates the most susceptible individual each time, which is considered as the

individual with the most number of infected neighbors.

Results. The experimental results are shown in Fig. 7.4. As can be seen, F-PPO

achieves the best performance in terms of long-term fairness and significantly improves short-

term fairness compared with the Max and PPO agents. A-PPO achieves the best performance

in terms of short-term fairness, but produces the worst performance in gaining rewards. As

expected, the Max agent achieves the highest utility performance, but it also demonstrates

the poorest fairness performance. The combination of the results also demonstrates the

capability of the F-PPO. The ablation study in Fig. 7.2c shows similar results to the other

two case studies.

7.6 Conclusions

In this chapter, we studied the problem of achieving long-term fairness in sequential

decision-making systems. We modeled the system as a Markov Decision Process (MDP)

and tackled the problem by developing a fair reinforcement learning (RL) algorithm. By

acknowledging that short-term fairness and long-term fairness are distinct requirements that

may not necessarily align with one another, we developed an algorithmic framework that

incorporates both requirements using different bias mitigation approaches, including pre-

processing and in-processing approaches. We conducted three simulation case studies. The

results show that our method can strike a balance between short-term fairness, long-term

fairness, and utility.
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8 Conclusions and Future Work

In recent years, with the widespread application of automated decision-making sys-

tems, the issue of algorithmic bias has received a lot of attention, and fair machine learning

has become a hot research topic. Researchers have proposed various fairness metrics and

fairness algorithms. However, current research mainly focuses on studying fairness in static

environments, while most real-world problems are dynamic. In this dissertation, we studied

fairness in dynamic environments and proposed algorithms to achieve long-term fairness in

several different settings. This chapter concludes the whole dissertation and discusses the

future work.

8.1 Conclusions

Our dissertation has conducted several works to mainly address the following research

problems:

1. How to make multiple interrelated decision models make fair decisions simultaneously

in a dynamic system;

2. How to measure and achieve long-term fairness of a decision model in a dynamic system;

3. How to learn a model from collected static data to achieve long-term fairness beyond

the data;

4. How to achieve long-term fairness while balancing short-term fairness and utility in a

reinforcement learning environment.
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To address the above problems, we have summarized the proposed algorithms and definitions

as follows.

In Chapter 4, we studied how to train multiple fair classifiers in dynamic settings.

It is not feasible to train multiple models using the collected dataset according to the con-

ventional fairness algorithms. Because the previous models will change the data distribution

after deployment, the later models are no longer fair. Leveraging structural causal model,

we treated each decision model as a soft intervention and inferred the post-interventional

distributions. Then, by using do-calculus and surrogate functions, we derived loss functions

and fairness constraints based on post-interventional distributions. Multiple fair classifiers

were obtained by solving the optimization problem composed of loss functions and fairness

constraints. In addition, we theoretically showed that combining multiple decision models

in the optimization would not introduce additional surrogate errors. Experimental results

showed the effectiveness of our algorithm.

In Chapter 5, sequential decision-making was described by a time-lagged causal graph,

and we proposed that the path-specific causal effects of the sensitive attribute on the deci-

sion at a certain time step is regarded as its long-term fairness. Similar to Chapter 4, it can

be formulated as a constrained optimization problem, but for longer decisions, the derived

fairness constraints will be very complex. To simplify the computation, the problem was

converted to a performative risk optimization problem and then we proposed an optimiza-

tion algorithm by leveraging repeated risk minimization. Moreover, the convergence of the

proposed algorithm was analyzed theoretically. Finally, we conducted experiments on two

synthetic datasets and verified the effectiveness of the proposed framework and algorithm.

In Chapter 6, we have proposed a three-phase deep generative framework that utilizes

RCGAN to predictively generate observational and interventional data in order to achieve
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long-term fairness. The framework employs a causal time series graph and independent

mechanism to train a classifier hω on the time series D in the first phase, and an RCGAN in

the second phase, where the decisions are generated using hω. In the final phase, we train a

fair decision model that uses 1-Wasserstein distance as the long-term fairness constraint and

direct discrimination as the local fairness constraint. We have formulated the optimization as

a performative risk minimization and solved it using the repeated gradient descent algorithm.

Experimental results on both synthetic and semi-synthetic time series datasets demonstrate

that our method achieves a balance between long-term fairness, local fairness, and accuracy.

In Chapter 7, we presented a novel algorithm F-PPO that can train a fair policy

to promote short-term and long-term fairness simultaneously in sequential decision making

scenarios. Instead of only considering short-term fairness as previous work, we took both

short-term and long-term fairness into account and proposed different methods to promote

each separately. To this end, we improved short-term fairness by training the model on fairer

data generated by modifying actions, while achieving long-term fairness by regularizing the

advantage function. Moreover, we investigated three case studies of bank loans, attention

allocation and epidemic control and experimental results showed the effectiveness of the

algorithm.

8.2 Future Work

In this dissertation, we proposed causality-based fairness notions and various algo-

rithms to achieve long-term fairness under distribution shift in dynamic environments. In

addition, there are many other directions worth exploring and investigating.

In chapters 4 - 6, we explicitly assume the causal models are Markovian models,

which means there are no hidden confounders in the models. However, in the real world,
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an event may involve multiple causes, both direct and indirect, and it is almost impossible

to enumerate all of them. Therefore, the existence of confounding factors may be a more

common scenario. The causal model used to model this scenario is called a semi-Markov

model, which brings about identification issues, i.e., causal effects may not be uniquely

identified from the observational data. Some existing works [119] use latent models to model

this situation, and in the future, we can try to combine our work with latent models to

handle a wider range of problems.

In chapter 7, our algorithm belongs to the field of online reinforcement learning,

which requires continuous interaction with the environment. Training models in simulation

environments is not a big issue for many tasks, such as go or chess games. However, most of

the scenarios where fairness is applied are high-risk or related to human welfare, and such

applications are not entirely suitable for using simulated environments and it is also difficult

to construct a real simulation environment. Therefore, it is a meaningful research direction

to explore how to train a fair policy using only historical data with offline learning algorithms

[120, 121].

In recent years, large models [122, 123] have become a trend. Since training large

models requires massive resources and time, parameter-efficient fine-tuning [124] has be-

come an important way for ordinary researchers to conduct research. Most existing fairness

learning methods require adding fairness constraints during the training process, which is

not suitable for pre-trained large models. The mismatch between this demand and current

methods motivates us to further investigate how to efficiently enforce fairness on large-scale

models.
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