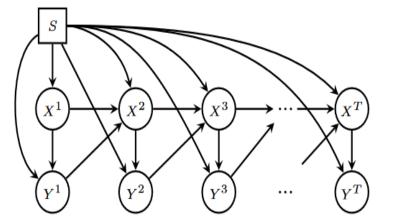


INTRODUCTION


- The US Supreme Court ruled that affirmative action policies are unconstitutional and race can no longer be regarded as a factor in admissions to US universities. It shows group disparities and fairness are important aspects of social concern.
- Currently, the majority of studies in fair machine learning are focused on the problem of building decision models for fair one-shot decision-making. However, the algorithms based on traditional fairness notions cannot mitigate group disparities and could even exacerbate the gap.
- Long-term fairness has been proposed to focus on the mitigation of group disparities in the sequential decisions rather than making fair decisions in a single time step.

Our Goal

We mitigate group disparity and achieve long-term fairness while limiting the use of the sensitive attribute in decision-making models.

PROBLEM SETTING

- Long-term Fairness for Sequential Decision Making - Given a time time series dataset $\mathcal{D} = \{(S, \mathbf{X}^t, Y^t)\}_{t=1}^l$ and causal graph.
 - S is a binary sensitive feature.
 - \mathbf{X}^t is the profile features at time step *t*.
 - Y^t is a binary decision based on S and X^t .

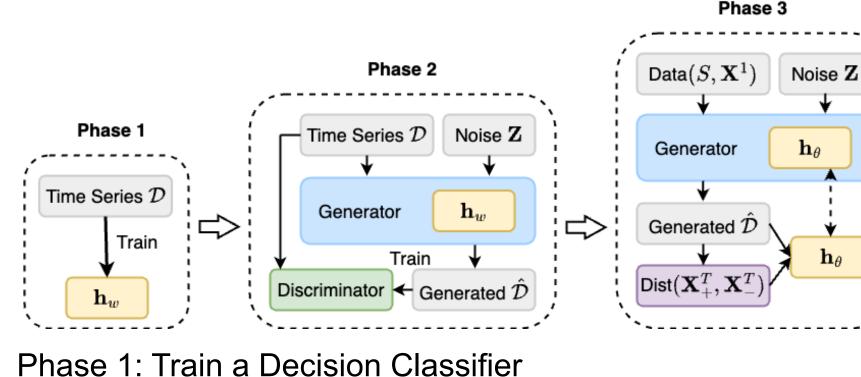
Our Task

Learn a decision model $h_{\theta} : S \times X \mapsto \mathcal{Y}$ such that when deployed at every time step, fairness can be achieved at a certain time step T where T > l.

Long-Term Fair Decision Making through **Deep Generative Models**

Yaowei Hu¹, Yongkai Wu², Lu Zhang¹ ¹University of Arkansas, ² Clemson University

Analysis from the Causality Perspective

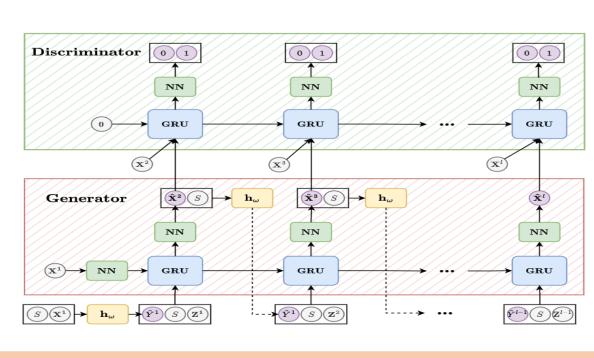

- Paths of causal effect of S on X^T can be categorized into: • Those that intersect with decision nodes (e.g., $S \rightarrow X^1 \rightarrow Y^1 \rightarrow Y^1$
- $X^2 \rightarrow \dots$).
- Eliminating the causal effect of S on X^T via updating the decision model means learning a decision model h_{θ} such that the causal effects transmitted through two sets of paths are cancelled out.
- Due to the requirement of sensitive attribute unconsciousness, long-term fairness may not always be achievable on through updating the decision model.

METHODOLOGY

Core Ideas

- Design a deep generative model predictively generate data following both observational and interventional distributions.
- Integrate the prediction and model training into a collaborative training framework such that the predicted data are used as reliable data for training the fair decision model.

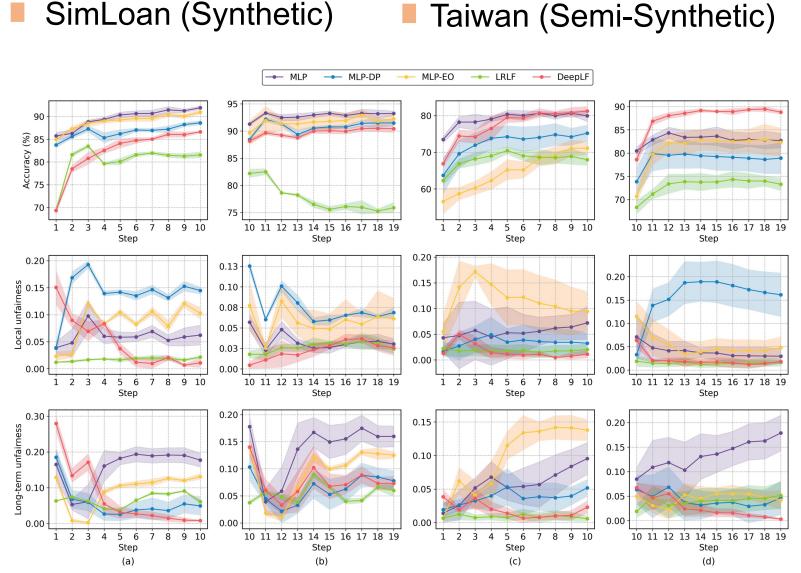
Our 3-Phase Framework (called DeepLF)



- Train a classifier h_{ω} as a component of RCGAN.
- Phase 2: Train an RCGAN
- Train a recurrent conditional GAN to simulate the data generation.
- Phase 3: Train the Long-term Fair Decision Model - Train the decision model on the data generated by the recurrent conditional GAN.

• Those that bypass decision nodes (e.g., $S \rightarrow X^1 \rightarrow X^2 \rightarrow ...$).

The Architecture of RCGAN



EXPERIMENTS

Baselines

- **MLP**: A MLP without any fairness constraints.
- **MLP-DP**: MLP with DP as fairness constraints.
- **MLP-EO**: MLP with EO as fairness constraints.
- **LRLF**: A logistic regression model with long-term and short-term fairness constraints.

Datasets

ACKNOWLEDGEMENT

This work was supported in part by NSF 1910284, 1946391 and 2142725.