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Related Work
Fair machine learning in the past decade has been focused on
static settings with one-shot decisions being made (Mehrabi
et al. 2021; Caton and Haas 2020). In recent years, attention
has been paid to dynamic settings where sequential deci-
sions are made over time. Some efforts have been devoted
to a compound decision-making process called pipeline
(Bower et al. 2017; Dwork and Ilvento 2018). In pipelines,
individuals may drop out at any stage, and classification in
subsequent stages depends on the remaining cohort of indi-
viduals. For instance, hiring is at least a two-stage model: de-
ciding whom to be interviewed from the applicant pool and
then deciding whom to be hired from the interview pool. In
addition to the pipeline, a more practical and challenging dy-
namic setting considers that decisions made in the past can
reshape the data population and subsequently influence fu-
ture decisions (Zhang and Liu 2020). In this setting, several
studies have demonstrated the inadequacy of static fairness
approaches in various application scenarios, including credit
lending (Liu et al. 2018), college admission (D’Amour et al.
2020), labor market (Hu and Chen 2018). In (Creager et al.
2020), the authors propose to use causal directed acyclic
graphs (DAGs) as a unifying framework to study fairness
in dynamical systems but have not reached any approach
to achieve long-term fairness. In (Hu et al. 2020), the au-
thors studied fair multiple decision making which also ap-
plies SCM and leverages soft interventions to model the de-
ployment of decision models. However, (Hu et al. 2020) is
focused on the static fairness of each decision model sep-
arately other than the long-term fairness. As a related line
of work, some research (e.g., (Jabbari et al. 2017; Zhang
et al. 2020; Wen, Bastani, and Topcu 2021; Yu et al. 2022))
studies long-term fairness in the context of reinforcement
learning whose setting is different from supervised learning.
Another related line of work proposes effort-based fairness
measures that balance the effort an individual needs to make
to change the decision outcome between two groups (Hei-
dari, Nanda, and Gummadi 2019; Huan et al. 2020; Guldo-
gan et al. 2022). The hypothesis is that effort fairness will en-
courage rejected individuals to improve their qualifications
and prevent the exacerbation of the gap between different
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groups in the long run. For example, in (Heidari, Nanda,
and Gummadi 2019), the authors propose a framework for
characterizing the long-term impact of decision making al-
gorithms on reshaping the distribution and leverage social
models to simulate how individuals may respond to the de-
cisions. The most relevant work to this paper is (Hu and
Zhang 2022). It studied long-term fair decision making and
formulated long-term fairness from the causal perspective.
However, (Hu and Zhang 2022) requires true causal struc-
ture equations for training. In addition, it cannot achieve
fairness at a time step that is beyond the training data. These
limitations greatly reduce its practical significance.

Proof of Proposition 1
Proposition 1. Let d be the 1-Wasserstein distance given in
Definition 1.

For any sensitive attribute-unconscious decision model
f : X 7→ A that is Lipschitz continuous, its DP is bounded
by lf ·d where lf is the Lipschitz constant of f . If we assume
that the true label Y is given by a decision model g : X 7→ A
that is Lipschitz continuous and satisfies the equal base rate
condition, then the EO of f is bounded by (lf + lg)/P (y) ·d
where lg is the Lipschitz constant of g.

Proof. For simplicity, in this proof we drop the superscript
T and the notation of the soft intervention for XT (σθ). Ac-
cording to the definition of DP, we have

DP(f) = |E[f(X)|S = s+]− E(f(X)|S = s−)|.

Due to the Kantorovich–Rubinstein duality (Villani 2021),
it is straightforward that

DP(f) ≤ sup
∥f∥≤lf

[
Ex∼P (x|s+)[f(x)]− Ex∼P (x|s−)[f(x)]

]
= lf ·W (P (X|S = s+), P (X|S = s−)) = lf · d.

On the other hand, we have

EO(f) = |E[f(X)|Y =1, S=s+]−E(f(X)|Y =1, S=s−)|.

Since we assume that Y is given by g and g satisfies the
equal base rate condition, we have that P (Y |X, S) = g(X)



and P (Y |S) = P (Y ). It then follows that

E[f(X)|y, s] =
∫
x

f(x)P (x|y, s)dx

=

∫
x

f(x)P (x|s)P (y|x, s)
P (y|s)

dx =

∫
x

f(x)P (x|s) g(x)
P (y)

dx

=
1

P (y)
Ex∼P (x|s)[f(x)g(x)].

In addition, define m(x) = f(x)g(x) and denote its Lip-
schitz constant as lm. It is easy to show that lm ≤ lf ·
supX |f(X)| + lg · supX |g(X)|. Since h(X) ≤ 1 and
g(X) ≤ 1, we have lm ≤ lf + lg . As a result, we have

EO(f) ≤ lf + lg
P (y)

W (P (X|S = s+), P (X|S = s−))

=
lf + lg
P (y)

· d.

Implementations Details and
Hyperparameters

Experiments are performed on the computer with Intel Core
i7-9700K CPU and NVIDIA GeForce GTX 1180 GPU. Ex-
cept for LRLF, other baselines and our framework are used
multi-layer fully-connected networks, i.e., MLP, as the clas-
sifiers. The details of the model architectures and hyperpa-
rameters used in our framework on two datasets are given in
Tables 1 and 2. For a fair comparison, we adopt the same net-
work structure and parameter settings for our decision model
hθ. Both datasets are split into train/validation/test sets with
the ratio 70/10/20. The models are trained on the train sets
and the hyperparameters are chosen on the validation sets.
The reported results are calculated on the test sets.

Data Generation
Synthetic Dataset. We generate the synthetic time series
dataset based on the causal time series graph shown in Fig-
ure 1 in the main paper. Each sample at each time step in the
time series includes a sensitive feature S, profile features
Xt and a decision Y t. The samples at the initial time step
X1, Y 1 are generated by calling the data generation func-
tion (i.e., make classification) of scikit-learn package. Then,
we cluster the generated samples into two groups and assign
S to each sample according to the cluster it belongs to. To
generate the data samples in the remaining time steps, we
design a procedure by simulating the bank loan system in
the real world. We first train a neural network classifier hθ∗

on S,X1, Y 1 and treat it as the ground-truth model. For each
time step t, classifier hθ∗ takes as inputs S and Xt and out-
puts a probability distribution over Y t. We then sample Y t

from the distribution as shown below:

P (Y t) = hθ∗(S,Xt) Y t ∼ Bernoulli(P (Y t)) (1)

After that, we update the value of Xt to obtain Xt+1 based
on the value of Y t. We treat Y t as the ground-truth of loan
repayment (Y t = 1) and default (Y t = 0). An individual

with Y t = 1 should have a larger probability to be predicted
as 1 in the next time step, and vice versa. Therefore, we up-
date the value of Xt according to the value of Y t as well as
the gradient of a loss function between the predicted proba-
bility and label 1, as given below:

Xt+1 = Xt − ϵ · (2Y t − 1) · ∂L(hθ∗(S,Xt), 1)
∂Xt

(2)

where the parameter ϵ controls the magnitude of changes
in Xt. As a result, Xt+1 will be predicted closer to label
1 if Y t = 1, and will be predicted further from label 1 if
Y t = 0. Following above generation rules, we generate a 10-
step synthetic time series dataset with 10000 instances and
Xt is 6 dimensional vector. We refer to this dataset SimLoan.

Semi-Synthetic Dataset. We also generage semi-
synthetic data by leveraging the real-world Taiwan dataset
as the initial data at t = 1. A ground-truth classifier and
similar generation rules of change are used to generate sub-
sequent decisions Y 1, ..., Y l and profile features X2, ...,Xl.
There are 10000 instances in the initial data and they are
randomly and equally sampled from groups by S and Y for
balance. Like the SimLoan dataset, this dataset is also made
up of 10 steps. We choose SEX as the sensitive feature S
and BILL ATM1 - BILL ATM6 as the profile features in X.
We refer to this dataset Taiwan.

Table 1: The architectures of CLF and hθ and hyperparame-
ters for both datasets

Layer Inputs
Output Dim

SimLoan Taiwan
X 6 6
S 1 1

FC 1 [X, S] 32 16
FC 2 FC 1 64 32
FC 3 FC 2 1 1

Optimizer Adam
Learning rate 0.001

Batch size 512
λu 1.0 1.0
λs 2.1 0.2
λl 128.4 40.0
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Table 2: The architecture of RCGAN and hyperparameters
for both datasets

Layer Inputs
Output Dim

SimLoan Taiwan
X/Z 6 6
S/Y 1 1

Generator
GRU 1 [Z, S, Y] 64 64
GRU 2 GRU 1 64 64
FC 1 GRU 2 6 6

Penalty
MMD [X, FC1] 1 1

Discriminator
GRU 1 FC 1 64 64
GRU 2 GRU1 64 64
FC 1 GUR 2 1 1

Opimizer Adam
Learning rate 0.001

Batch size 512
γ 100
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