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Background

Fairness notions: demographical parity, equalized odds and counterfactual fairness.

Fair machine learning plays an important role in decision making tasks such as hiring,

college admissions and bank loans.

Data Generation Process:

Baselines:

Logistic Regression (LR): An unconstrained logistic regression model which takes 

user features and labels from all time steps as inputs and outputs.

Fair Model with Demographic Parity (FMDP): On the basis of the logistic regression 

model, fairness constraint is added to achieve demographic parity.

Results of Synthetic and Semi-synthetic Datasets:
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Fair Model with Equal Opportunity (FMEO):  On the basis of  the logistic regression 

model, fairness constraint is added to achieve equal opportunity. 

Causality-based Long-term Fairness

Performative Risk Optimization

Experiments
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Our goal: Fair decision making should concern not only the fairness of a single decision 

but more importantly, whether a decision model can impose fair long-term effects on 

different groups. This notion of fairness is referred to as long-term fairness.

Goal and Challenges

However, the majority of studies on fair machine learning focus on the static or one-shot

classification setting.

In practice, decision making systems are usually operating in a dynamic manner such as

that the classifier makes sequential decision over a period of time.

Example:

The bank uses the applicants’ credit 

scores to make loan decisions

The bank’s decisions will affect the 

applicants’ credit scores

Feedback Loop

Loan We simulate a process of bank loans following the above time-lagged causal graph, where 

𝑆 is the protected attribute like race, 𝑿𝑡 represents the financial status of applicants, and 𝑌𝑡

represents the decisions about whether to grant loans.

We sample the predicted decisions from: 

𝑿𝑡+1 is generated according to the update rule below:

The challenges of achieving long-term fairness:

- Feedback Loop. Without knowing how the population would be reshaped  by decisions, 

enforcing any fairness constraint may create negative feedback loops and eventually harm 

fairness in the long run.

- Distribution Shift. Ignoring the distribution shift will critically affect the achievement of 

long-term fairness, as long-term fairness is affected by all decisions made by the model 

along the time.

Definition 1 (Long-term Fairness). The long-term fairness of a  decision model ℎθ is 

measured by 𝑃 ෠𝑌𝑡∗ 𝑠π
+, θ − 𝑃 ෠𝑌𝑡∗ 𝑠π

−, θ where π is a set of paths from 𝑆 to ෠𝑌𝑡∗

passing through 𝑿𝑟
1, ෠𝑌1, … , 𝑿𝑟

𝑡∗−1, ෠𝑌𝑡∗−1, 𝑿𝑟
𝑡∗, 𝑠π represents the path-specific hard intervention 

and θ represents the soft intervention through all paths.

Definition 3 (Institute Utility). The institution utility of a decision model ℎθ is measured 

by the aggregate loss given by σ𝑡=1
𝑡∗ 𝐸 𝐿 𝑌𝑡 , ෠𝑌𝑡 where 𝐿(∙) is the loss function.

Problem Formulation 1. The problem of fair 

sequential decision making is formulated as the 

constrained optimization:

arg min
θ

σ𝑡=1
𝑡∗ 𝐸 𝐿 𝑌𝑡 , ෠𝑌𝑡

s.t. 𝑃 ෠𝑌𝑡∗ 𝑠π
+, θ = 1 − 𝑃 ෠𝑌𝑡∗ 𝑠π

−, θ = 1 ≤ τ𝑙

𝑃 ෠𝑌𝑡 𝑠𝜋𝑡
+ , θ = 1 − 𝑃 ෠𝑌𝑡 𝑠𝜋𝑡

− , θ = 1 ≤ τ𝑡, 𝑡 = 1,… , 𝑡∗

where 𝜏𝑙 and 𝜏𝑡 are thresholds for long-term and short-

term fairness constraints, respectively.

Definition 2 (Short-term Fairness). The short-term fairness of a decision model ℎθ at time

𝑡 is measured by the causal effect transmitted through paths involved in time 𝑡 , i.e., 

𝑃 ෠𝑌𝑡 𝑠𝜋𝑡
+ , θ − 𝑃 ෠𝑌𝑡 𝑠𝜋𝑡

− , θ , where 𝜋𝑡 = {𝑆 → ෩𝑿𝑟 → ෠𝑌𝑡 , 𝑆 → ෠𝑌𝑡} with redlining attributes 

෩𝑿𝑟, 𝑠π is the path-specific hard intervention and θ represents the soft intervention.

To make it easier to solve the optimization problem in Problem Formulation 1, we convert 

it to the form of performative risk optimization.

Problem Formulation 2. The problem of fair sequential 

decision making is reformulated as the performative risk 

optimization:

arg min
θ

𝑙 θ = λ𝑢𝑙𝑢 θ + λ𝑙𝑙𝑙 θ + λ𝑠𝑙𝑠(θ)

where λ𝑢 , λ𝑙 and λ𝑠 are weight parameters and satisfy λ𝑢 +
λ𝑙 + λ𝑠 = 1.

Repeated Risk Minimization

Repeated risk minimization (RRM) is an iterative 

algorithmic heuristic for solving the performative 

risk optimization problem.

Theorem 1. Suppose that surrogated loss function 

𝜑 ∘ ℎ ∙ is 𝛽 −jointly smooth and 𝛾-strongly convex 

and suppose that 𝑿𝑡+1 are 𝑐-sensitive for any 𝑡, then 

the repeated risk minimization converges to a stable 

point at a linear rate, if 2𝑚𝑐(𝑡∗−1) <
β

γ
.
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