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Proof of Lemma 2
Lemma 1. For any t, suppose that Xt+1 are c-sensitive,
then distribution P (Xt|do(sπ, θ)) is ε-sensitive with ε ≤
2mc(t − 1), where m is the maximum ground distance be-
tween two values of Xt.

Proof. Let Dxt(θ) denote probability P (xt|do(sπ, θ)) and
D(θ) denote the corresponding distribution. We adopt a sim-
ple greedy strategy to solve the transportation problem to
obtain a upper bound of W1(D(θ), D(θ′)). We transverse
through each value of Xt. For each xt, if the amount of dirt
in Dxt(θ) is larger than that of Dxt(θ′), then we move the
additional dirt to a pool. If the amount of dirt in Dxt(θ) is
less than that of Dxt(θ′), then we insert this demand into a
queue and move the dirt from the pool to Dxt(θ) as soon as
there is enough dirt in the pool. As a result, the total amount
of dirt moved by this strategy is

∑
Xt |Dxt(θ) − Dxt(θ′)|.

Thus, we have

W1(D(θ), D(θ′)) ≤
∑
Xt

|Dxt(θ)−Dxt(θ′)| ·m, (1)

where m is maximum ground distance between two val-
ues of Xt. Then, according to the mean value theorem and
Cauchy–Schwarz inequality, we have

|Dxt(θ)−Dxt(θ′)| = |∇Dxt(η) · (θ − θ′)|
≤ ‖∇Dxt(η)‖‖θ − θ′‖

(2)

for some η ∈ [θ, θ′]. By definition of Dxt(θ), it follows that

Dxt(θ) := P (xt|do(sπ, θ))

=
∑

X1,Y 1,··· ,Y t−1

P (x1|s)Pθ(y1|x1, s) · · ·P (xt|xt−1, yt−1).

Thus, we have

∇Dxt(θ) =
∑

X1,Y 1,··· ,Y t−1

{
P (x1|s)∇Pθ(y1|x1, s) · · ·P (xt|xt−1, yt−1)

+ P (x1|s)Pθ(y1|x1, s)P (x2|x1, y1)∇Pθ(y2|x2, s) · · ·
+ · · · }
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According to the definition of c-sensitivity, we have

‖
∑
Y t

∇θPθ(yt|xt, s)P (xt+1|xt, yt)‖ ≤ c
∑
Y t

P (xt+1|xt, yt).

By the triangle inequality, it follows that

‖∇Dxt(θ)‖ ≤
∑

X1,Y 1,··· ,Y t−1

{
P (x1|s)cP (x2|x1, y1) · · ·P (xt|xt−1, yt−1)

+ P (x1|s)Pθ(y1|x1, s)P (x2|x1, y1)cP (x3|x2, y2) · · ·
+ · · · }

= c
∑

X1,Y 1,··· ,Y t−1

{
P (x1,x2, · · · ,xt|do(y1))

+P (x1, y1, · · · ,xt|do(y2)) + · · ·
}

= c

{∑
Y 1

Pθ(x
t|do(s, y1)) + · · ·+

∑
Y t−1

Pθ(x
t|do(s, yt−1))

}
,

(3)

where the second step is based on the truncated factorization
formula of computing the do-operation. Combining Eqs. (1),
(2), and (3), we have

W1(D(θ), D(θ′)) ≤ mc
∑
X

{∑
Y 1

Pη(xt|do(s, y1))+

· · ·+
∑
Y t−1

Pη(xt|do(s, yt−1))

}
‖θ − θ′‖

= 2mc(t− 1)‖θ − θ′‖.

Hence, the lemma is proven.

Proof of Theorem 1
Theorem 1. Suppose that surrogated loss function (φ◦h)(·)
is β–jointly smooth and γ-strongly convex, and suppose that
Xt+1 are c-sensitive for any t, then the repeated risk min-
imization converges to a stable point at a linear rate, if
2mc(t∗ − 1) < β

γ .

Proof. This proof basically follows the proof of Theorem
3.5 in (Perdomo et al. 2020).



Fix θ, θ′ ∈ Θ. Let

fa(ϕ) =

t∗∑
t=1

E
S,Xt, Y t ∼ P (S,Xt, Y t)

[
φ
(
Y thϕ(Xt, S)

)]
,

fl(ϕ) =
1

2

{
E

Xt∗ ∼ P
(
Xt∗ |do((s+π , θ)

)
[
φ
(
−hϕ

(
Xt∗ , s−

))]
+ E

Xt∗ ∼ P
(
Xt∗ |do((s−π , θ)

)
[
φ
(
hϕ

(
Xt∗ , s−

))]
− 1

}
,

fs(ϕ) =
1

t∗

t∗∑
t=1

{
E

Xt ∼ P
(
Xt|do((s+πt , θ)

)
[
φ
(
−hϕ

(
Xt∗ , s−

))]
+ E

Xt∗ ∼ P
(
Xt∗ |do((s−πt , θ)

)
[
φ
(
hϕ

(
Xt∗ , s−

))]
− 1

}
,

and

f(ϕ) = λafa(ϕ) + λlfl(ϕ) + λsfs(ϕ).

Define f ′(ϕ) similarly to f(ϕ) by replacing θ with θ′.
Let G(θ) = argminϕ f(ϕ). Since (φ ◦ h)(·) is γ-strongly
convex, f(·) is at least γ-strongly convex. Then, we have

f(G(θ))− f(G(θ′))

≥ (G(θ)−G(θ)′)>∇f(G(θ′)) +
γ

2
‖G(θ)−G(θ′)‖22,

f(G(θ′))− f(G(θ)) ≥ γ

2
‖G(θ)−G(θ′)‖22.

Combining the two inequalities we have

−γ‖G(θ)−G(θ′)‖22 ≥ (G(θ)−G(θ)′)>∇f(G(θ′)). (4)

On the other hand, since (φ◦h)(·) is β-jointly smooth, by
applying Cauchy-Schwarz inequality we have that (G(θ) −
G(θ)′)>∇φ(hG(θ′)(x

t∗ , s)) is ‖G(θ)−G(θ′)‖2β-Lipschitz.
Using the dual formulation of the optimal transport distance
and Lemma 1, we have

(G(θ)−G(θ)′)>∇fl(G(θ′))− (G(θ)−G(θ)′)>∇f ′l (G(θ′))

≥ −εβ‖G(θ)−G(θ′)‖2‖θ − θ′‖2,

(G(θ)−G(θ)′)>∇fs(G(θ′))− (G(θ)−G(θ)′)>∇f ′s(G(θ′))

≥ −εβ‖G(θ)−G(θ′)‖2‖θ − θ′‖2,

where ε = 2mc(t∗ − 1). In addition, we have

(G(θ)−G(θ)′)>∇fa(G(θ′))−(G(θ)−G(θ)′)>∇f ′a(G(θ′)) = 0

Adding up above three (in)equalities, we have

(G(θ)−G(θ)′)>∇f(G(θ′))− (G(θ)−G(θ)′)>∇f ′(G(θ′))

≥ −εβ‖G(θ)−G(θ′)‖2‖θ − θ′‖2.

Due to the first-order optimality conditions for convex
functions, it follows that

(G(θ)−G(θ)′)>∇f(G(θ′)) ≥ −εβ‖G(θ)−G(θ′)‖2‖θ−θ′‖2.
(5)

Combining Eqs. (4) and (5), we have

−γ‖G(θ)−G(θ′)‖22 ≥ −εβ‖G(θ)−G(θ′)‖2‖θ − θ′‖2.

By rearranging, we have

‖G(θ)−G(θ′)‖2 ≤ ε
β

γ
‖θ − θ′‖2.

Let θPS be a stable point, i.e., G(θPS) = θPS. In addition,
by definition we have θi = G(θi−1). Thus, it follows that

‖θi − θPS‖ ≤ ε
β

γ
‖θi−1 − θPS‖2 ≤

(
ε
β

γ

)i
‖θ0 − θPS‖2.

Therefore, if ε = 2mc(t∗ − 1) < β
γ , the RRM converge

to θPS at a linear rate.
Hence, the theorem is proven.
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