
A Generative Adversarial Framework for Bounding 
Confounded Causal Effects

Yaowei Hu1, Yongkai Wu2, Lu Zhang1, Xintao Wu1

1University of Arkansas
2Clemson University



Causal Inference

Inferring causal effects from observational data is an important task in 
many fields.
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Economics Healthcare Fair Machine Learning

Pearl’s structural causal model is a decent and widely adopted 
framework for conducting causal inference.



Inferring Causal Effects
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Under the assumption of no hidden confounding, the ACE can be calculated 
using the well-known back-door criterion.

intervention outcome



Inferring Causal Effects
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causal effects

confounding effects

When hidden confounders exist, the ACE may not be uniquely calculated 
from the observational data without further assumptions, known as the 
unidentifiable problem.

Confounders

In an unidentifiable situation, 
any estimation of ACEs only 
based on the observational 
distribution is not guaranteed to 
be correct.



Unidentifiable Problem
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The two models completely agree 
with 𝑃(𝐴, 𝐵, 𝐶), but differ in the 
ACE of 𝐴 on 𝐵.

• Causal graph 

• Two different causal models

Unidentifiable Problem



Previous Work on Bounding ACE

• [Balke and Pearl, 1997] developed a constrained optimization 
problem for discovering bounds from the observational data.

• The general idea is to shift the randomness of the causal model 
from the distributions of 𝑼 to the distributions of mappings, and 
then use linear programming to search for distributions that lead 
to lower or upper bound of the ACE. 

• Limitations: limited to categorical endogenous variables and 
cannot directly extend to the continuous domain.
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Our Work
• We extend the previous method for bounding ACEs to continuous 

and possibly high dimensional variables.

• We propose to parameterize the unknown exogenous random 
variables and structural equations of a causal model using neural
networks and implicit generative models.
– Estimate response functions from PAV to 𝑉 by neural networks with a 

certain network structure.

– Use the implicit generative model to generate the distribution for the 
response-function variable.

– Parameterize the causal model by expressing it with response-function 
variables.

– Formulate an adversarial learning problem for computing the bounds of 
the ACE.
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Response-function
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• Response-function

To partition the domain of each exogenous variable into a limited number of 
equivalent classes, each inducing a distinct functional mapping between 
endogenous variables. These functional mappings are called the response 
functions.
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Response-function Variables
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• Response-function variables 𝒓 are used to parameterize the causal model.

• Categorize the unknown domain of 𝑼 into limited number of equivalent 
regions, each of which is denoted by a value of a response-function variable.

• As a result, all uncertainties in the causal model parameterized by 𝑃(𝒓).

• Search bounds by a linear programming problem with 𝑃(𝒓) as variables.

𝑈𝑌

𝑋 𝑌

𝑈𝑋

𝑟𝑋 = ቊ
0 if 𝑓𝑋 𝑢𝑋 = 𝑥0
1 if 𝑓𝑋 𝑢𝑋 = 𝑥1

𝑟𝑌 =

0 if 𝑓𝑌 𝑥0, 𝑢𝑌 = 𝑦0, 𝑓𝑌 𝑥1, 𝑢𝑌 = 𝑦0
1 if 𝑓𝑌 𝑥0, 𝑢𝑌 = 𝑦0, 𝑓𝑌 𝑥1, 𝑢𝑌 = 𝑦1
2 if 𝑓𝑌 𝑥0, 𝑢𝑌 = 𝑦1, 𝑓𝑌 𝑥1, 𝑢𝑌 = 𝑦0
3 if 𝑓𝑌 𝑥0, 𝑢𝑌 = 𝑦1, 𝑓𝑌 𝑥1, 𝑢𝑌 = 𝑦1

• Example



Coping with Continues Domain
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• For each endogenous variable 𝑉, a neural network 𝑣 = ℎ𝑉(𝑝𝑎𝑉; 𝜃𝑉) is used as 
a universal estimator of response functions from PA𝑉 to 𝑉.

• Input 𝑝𝑎𝑉 and parameters 𝜃V ∈ ΘV.

• We treat ΘV as the response variable.

• If 𝑃𝐴𝑉 = ∅, directly use 𝑣 = 𝜃𝑉 to represent a trivial mapping.

• To generate different distributions for 𝜃V, we adopt the implicit generative 
model, which generates data by transforming some random noise to the data 
via some deterministic function.
• The random noise 𝒛𝑉 is taken as input and transformed into 𝜃𝑉 via a 

neural network 𝐺𝑉 𝒛𝑉 , referred to as a generator.



Parameterizing Causal Models
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• Obtain an implicit generative model for each 𝑉 ∈ 𝐕:
𝑣 = ℎ𝑉(𝑝𝑎𝑉; 𝐺𝑉(𝒛𝑉))

Definition 3.  For a causal model ∀ 𝑉 ∈ 𝑽, 𝑣 = 𝑓𝑉(𝑝𝑎𝑉 , 𝑢𝑉), its parameterized 
version is given by  

∀ 𝑉 ∈ 𝑽, 𝑣 = ℎ𝑉(𝑝𝑎𝑉; 𝐺𝑉(𝒛𝑉))

where generators 𝐺𝑉(𝒛𝑉) contain parameters that are to be learned from data.

𝑈𝑉



Encoding Independence Assumptions
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• Since Θ𝑉 is a representative of 𝑈𝑉, it should inherit the independence 
relationship between 𝑈𝑉 and other exogenous variables.

• Θ𝑉1 and Θ𝑉2 should be (in)dependent if 𝑈𝑉1 and 𝑈𝑉2 are known to be 
(in)dependent.

• Use same random noise for generators 𝐺𝑉1 and 𝐺𝑉2 if 𝑈𝑉1 and 𝑈𝑉2 are 

dependent.

• Any causal graph can be decomposed into a number of disjoint components, 
called c-components, such that any pair of exogenous variables are correlated 
if they belong to the same component and independent if they belong to 
different components.
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Bounding ACEs

• The ACE of 𝐴 on 𝐵 is given by 𝐸 𝐵|𝑑𝑜 𝑎1 − 𝐸[𝐵|𝑑𝑜(𝑎2)].

• For any intervention 𝑑𝑜(𝑎′), we directly perform it to modify the 
parameterized causal model as:

𝑎 = 𝑎′; ∀𝑉 ≠ 𝐴, 𝑣 = ℎ𝑉(pa𝑉; 𝐺𝑉(𝒛𝑉))

• We estimate the value of an ACE of 𝐴 on 𝐵 by sampling 𝐵 from the 
intervened parameterized causal model.

– Denoted by 𝐴𝐶𝐸(𝐺; 𝑎1, 𝑎0)

• Compute lower bound of ACE by minimizing 𝐴𝐶𝐸(𝐺; 𝑎1, 𝑎0).
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Bounding ACEs
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• The objective function is given by max
𝐷

𝑉 𝐺,𝐷 where

𝑉 (𝐺; 𝐷) = 𝐸𝒗 ∼ 𝑃 𝒗 [log𝐷(𝒗)] + 𝐸𝒛 ∼ 𝑃 𝒛 [log(1 − 𝐷(𝐺(𝒛)))]

• We want the causal models searched in learning process to be confined to 
those agree with a given observational distribution 𝑃 𝒗 .

• The generative adversarial learning framework is adopted to ensure that 
generated distribution is close to the observational distribution.

• A discriminator is trained to minimize the discrepancy between the generated 
distribution and the observational distribution.



Bounding ACEs
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Problem 1. Given a causal graph and the data, the lower bound (similarly for the 
upper bound) of the ACE of 𝐴 on 𝐵 is computed by solving the optimization

min
𝐺

max
𝜆≥0

max
𝐷

{𝐴𝐶𝐸 𝐺; 𝑎1, 𝑎0 + 𝜆(𝑉 𝐺, 𝐷 −𝑚 − 𝜂}

• Combining two partial objectives, to obtain the lower bound (similarly for the 
upper bound), we would like to learn generators 𝐺 that minimize 𝐴𝐶𝐸 𝐺; 𝑎1, 𝑎0
subject to that max

𝐷
𝑉 𝐺,𝐷 ≤ 𝑚 + 𝜂.

• 𝑚 is the theoretical minimal value of max
𝐷

𝑉 𝐺,𝐷 .

• 𝜂 is a threshold which specifies how close we want the generated distribution 
to the observational distribution.



Example
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• Causal graph and equations • Architecture of neural networks
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Linear Causal Models: A Special Case
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Proposition 1: Let 𝐶 be an instrumental variable for ACE of 𝐴 on 𝐵, then 

both bounds will converge to  
𝑐𝑜𝑣 𝐵,𝐶

𝑐𝑜𝑣 𝐴,𝐶
(𝑎1 − 𝑎0) if the generated distribution 

converges to the observational distribution.

• Linear causal model assume that all structural equations in the model are linear.

• For each variable 𝑉, we define the response function as the inner product 
between a parameter vector and the input, i.e., 𝑣 = 𝐺𝑉 𝒛𝑉 · pa𝑉, 1

𝑇. 



Experiments

• Experiments are conducted on synthetic and real-world data.

• Baselines:
– Linear/logistic regression:  We build a linear/logistic regression on the 

outcome using all observed variables, and then compute the ACE based 
on the coefficient of the treatment variable. 

– Instrumental variable estimation: We implement this method following 
the classic instrumental variable formula.

– Propensity score adjusted regression: We adopt the propensity score 
adjusted regression and follow other method to handle continuous 
variables.
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Experiments
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• Synthetic Data:

• Structural Equations:

ACE of 𝑋 on 𝑌



Experiments
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• Results of Synthetic Data:

• Our upper bound and lower bound 
cover the ground truth in all 
interventions.

• Other baseline methods cannot 
produce accurate estimations and fall 
outside the bounds in most cases.



Experiments
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• Adult Data:

Tool: TETRAD for building the causal graph (using the classic PC algorithm)

ACE of edu_level on income



Experiments
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• Results of Adult Data:

• The ground truth falls in the range of 
the upper bound and lower bound in 
all interventions.

• Other baseline methods including the 
logistic regression and propensity score 
cannot produce accurate estimations 
and fall outside the bounds in all cases.



Conclusions

• Proposed a bounding method for estimating average causal effects 
(ACEs) from observational data with hidden confounding.

• Parameterized the causal model using implicit generative models 
and builds an adversarial network to formulate a constrained 
optimization problem for computing the bounds.

• Showed that encoding the linear assumption can make the bounds 
converge to a fixed value.

• Conducted experiments on both synthetic and real-world datasets.
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