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Abstract

Causal inference from observational data is receiving wide
applications in many fields. However, unidentifiable situa-
tions, where causal effects cannot be uniquely computed from
observational data, pose critical barriers to applying causal in-
ference to complicated real applications. In this paper, we de-
velop a bounding method for estimating the average causal ef-
fect (ACE) under unidentifiable situations due to hidden con-
founding based on Pearl’s structural causal model. We pro-
pose to parameterize the unknown exogenous random vari-
ables and structural equations of a causal model using neural
networks and implicit generative models. Then, using an ad-
versarial learning framework, we search the parameter space
to explicitly traverse causal models that agree with the given
observational distribution, and find those that minimize or
maximize the ACE to obtain its lower and upper bounds. The
proposed method does not make assumption about the type
of structural equations and variables. Experiments using both
synthetic and real-world datasets are conducted.

Introduction
Inferring causal effects from observational data is an impor-
tant task in many fields, including economics (Zhao, Run-
fola, and Kemper 2017), healthcare (Hu and Kerschberg
2018; Wang and Wu 2019), fair machine learning (Zhang
and Bareinboim 2018; Zhang, Wu, and Wu 2018; Kusner
et al. 2017), etc. Pearl’s structural causal model (Pearl 2009)
is a decent and widely adopted mathematical framework for
conducting causal inference. In the structural causal model,
intervention is a technique that fixes some variable to certain
constant without changing other parts of the model. Facili-
tated by intervention, the average causal effect (ACE) of one
variable A on another variable B can be formulated as the
average change in B due to interventions on A. The calcu-
lation of the ACE from the observational data depends on a
causal graph that specifies the parental relationship among
variables. Under the assumption of no hidden confounding
(i.e., no unobserved common causes of A and B), the ACE
can be calculated using the well-known truncated factor-
ization formula (Pearl 2009). However, the no-hidden con-
founding assumption is usually over-simplified and needs to
be relaxed in practice. When hidden confounders exist, the

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ACE may not be uniquely calculated from the observational
data without further assumptions, known as the unidentifi-
able situation (Shpitser and Pearl 2008). In an unidentifiable
situation, any estimation of ACEs only based on the observa-
tional distribution is not guaranteed to be correct, since there
can be other underlying causal models that also agree with
the observational distribution but result in different ACEs
(Avin, Shpitser, and Pearl 2005).

In order to estimate the ACE in unidentifiable situations,
researchers seek for bounding approaches. In (Balke and
Pearl 1997), the authors develop a constrained optimization
problem for discovering bounds from the observational data
which are guaranteed to be tightest. The general idea is to
shift the randomness of the causal model from the distribu-
tions of U to the distributions of mappings so that it covers
all possible domains of U , either categorical, continuous, or
mixed. Then, the optimization is to search mapping distri-
butions with the maximum/minimum ACEs subject to the
constraint that the joint distribution must be consistent with
the data. In a recent work (Wu et al. 2019), the authors ex-
tend this idea to bound unidentifiable path-specific effects
and counterfactual effects in addition to the ACE. However,
these methods are limited to categorical observed variables
since the number of distinct functional mappings between
continuous variables are infinite, leading to an infinite num-
ber of variables in the optimization problem.

In this paper, we extend the method in (Balke and Pearl
1997) for bounding ACEs to continuous and possibly high-
dimensional variables, thanks to the significant progress of
generative models made by the machine learning commu-
nity in past years. Following the spirit of (Balke and Pearl
1997), we also shift the randomness of the causal model
from the distribution of U to the distribution of all possi-
ble mappings from A to B. We define a distribution over
the space of all mappings from A to B, which summarizes
all possible equations from (U,A) to B for all possible U .
Since the mapping from A to B can be in arbitrary forms,
we use the neural network as a universal estimator of map-
pings so that the space of all possible mappings is estimated
by the parameter space Θ of the neural network. Then, given
any distribution over Θ, i.e., P (θ), both the joint distribution
and the ACE can be expressed as functions of P (θ). In or-
der for the induced joint distribution to fit the observational
data, we adopt the generative adversarial learning frame-
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work, where a generator is designed to produce P (θ), and
a discriminator is designed to distinguish the generated dis-
tribution from the real distribution. Finally, we combine task
of finding the highest and lowest values of the ACE with the
adversarial learning. The training procedure of the generator
is to find a P (θ) that maximizes/minimizes the ACE, under
the condition that the discriminator is unable to identify the
generated distribution. In the experiments we demonstrate
that, our method can provide more accurate estimations to
the ACE than several widely used causal inference meth-
ods including instrumental variable estimation (Bowden and
Turkington 1984) and propensity score adjusted regression
(Abdia et al. 2017).

Handling hidden confounders is one of the most important
aspects of inferring ACEs from observational data. Some re-
cent works try to estimate the representation of hidden con-
founders using latent-variable models (e.g., (Louizos et al.
2017; Chiappa 2019; Madras et al. 2019)). However, these
works don’t consider the identifiability issue. Grounded on
the method in (Balke and Pearl 1997), our work provides
a much more reliable estimation of the ACE than previous
works. Since we don’t make any assumption about the type
of structural equations and variables, the proposed method
can serve as a general basis of applying the structural causal
model to a wider range of applications. Last but not least, in
some practical situations it may be reasonable to assume a
certain type of equations. Our method can be simply mod-
ified to encode such assumption. We include a subsection
showing that encoding the linear equation assumption can
make the bounds converge to a fixed value.

Related Work
To infer causal effects from observational data, many causal
inference methods have been proposed, either based on
Pearl’s structural causal model framework (Pearl 2009) or
Rubin’s potential outcome framework (Rubin 2005). Widely
adopted classic methods include propensity score based
methods (Abdia et al. 2017), causal graph based methods
(Pearl 2010), instrumental variable estimation (Bowden and
Turkington 1984), etc. In recent years, it has been proposed
to use machine learning models to facilitate causal infer-
ence. In (Shalit, Johansson, and Sontag 2017), the authors
estimated the causal effect under the no-hidden confound-
ing assumption by using a neural network structure that
learns a balanced representation for the treated and con-
trol distributions. In (Louizos et al. 2017; Chiappa 2019;
Madras et al. 2019), a latent representation was learned
to summarize the exogenous variable space of the causal
model by using deep latent-variable models such as the vari-
ational auto-encoding (VAE). Then, causal effects can be
estimated based on the latent-variable models via sampling
approaches. In (Yoon, Jordon, and Van Der Schaar 2018),
the authors used generative adversarial nets (GAN) to gener-
ate counterfactual outcomes such that the discriminator can-
not distinguish the counterfactual outcomes from the factual
outcomes, and then estimate the ACE based on the poten-
tial outcome framework. In (Kocaoglu et al. 2018; Xu et al.
2019), the authors also used GAN but propose to arrange the
network structure of the generator to preserve the structure

of a given causal graph. A recent work (Li et al. 2020) de-
veloped a GAN based deconfouding algorithm assuming no
hidden confounding.

One critical issue in causal inference is the identifiabil-
ity, which is not paid enough attention in many of these
work. Unidentifiable situations refer to that the unique es-
timation of certain causal effect on a causal graph is theo-
retically infeasible (Shpitser and Pearl 2008). In this sense,
the ACE in unidentifiable situations cannot be point iden-
tified from the data and one can only seek for estimating
bounds. The interval estimation of the ACE based on the
potential outcome framework has been studied in (Kallus,
Mao, and Zhou 2018), where a functional interval estima-
tor is derived from a weighted kernel regression. However,
this work only applies to the case where A is a binary treat-
ment. In the structural causal model framework, the rea-
sons of leading to unidentifiable situations have been stud-
ied in the causal inference literature, as summarized in (Wu
et al. 2019), where hidden confounding is one of the typical
reasons. Different bounding techniques have been proposed
to address different unidentifiable situations. For example,
(Miles et al. 2015) derived bounds for the natural direct ef-
fect with a discrete mediator. In (Zhang, Wu, and Wu 2018),
the authors proposed a method to bound unidentifiable path-
specific effects due to the existence of the “kite graph”. In
(Wu, Zhang, and Wu 2019), a method for bounding uniden-
tifiable counterfactual effects due to the existence of the “w
graph” was developed. However, none of these methods can
apply to unidentifiable situations due to hidden confounders.
In (Wu et al. 2019), the authors proposed a general frame-
work for bounding all unidentifiable situations, which is ex-
tended from (Balke and Pearl 1997) and also inherit its limi-
tation that all endogenous variables must be categorical. Our
work addresses the limitation of (Balke and Pearl 1997; Wu
et al. 2019) by a novel adaptation of the generative adver-
sarial learning framework. Following the idea of (Wu et al.
2019), our method can also extend to all unidentifiable sit-
uations in addition to those caused by hidden confounders.
This will be our future work.

Preliminaries
We develop our method based on Pearl’s structural causal
model framework, which is formally defined as follows.

Definition 1 (Structural Causal Model (Pearl 2009)). A
structural causal model M is represented by a quadriple
〈U,V,F, P (U)〉 where

1. U is a set of exogenous random variables that are deter-
mined by factors outside the model.

2. P (U) is a joint probability distribution defined over U.
3. V is a set of endogenous variables that are determined by

variables in U ∪V.
4. F is a set of structural equations from U∪V to V. Specif-

ically, for each V ∈ V, there is a function fV ∈ F map-
ping from U∪(V\V ) to V , i.e., v = fV (paV , uV ), where
paV and uV are realization of a set of endogenous vari-
ables PAV ∈ V \ V and a set of exogenous variables UV
respectively.

12105



A

C

B

U

Figure 1: Example: A,B,C are observed variables and U is
a hidden variable.

U C A = fA
0 0 0
0 1 0
1 0 1
1 1 1

Table 1: Equation
fA(c, u) for determin-
ing values of A.

U A B = f1
B B = f2

B

0 0 0 0
0 1 1 0
1 0 0 0
1 1 1 1

Table 2: Equations
f1B(a, u) and f2B(a, u) for
determining values of B.

If all exogenous variables in U are assumed to be mutu-
ally independent, then the causal model is called a Marko-
vian model; otherwise, it is called a semi-Markovian model.
For example, a causal model represented by Figure 1 is a
semi-Markovian model in which UA and UB are completely
correlated and denoted by a single exogenous variable U .

In general, fV (·) can be an equation of any type. In some
cases people may assume fV (·) to be a certain type of equa-
tion. For example, if for each node V , fV (·) is a linear equa-
tion, then the causal model is called a linear causal model; if
fV (·) is an additive equation, i.e., v = fV (paV ) + uV , then
the causal model is called an additive causal model.

Each causal model M is associated with a causal graph
G = 〈V , E〉 where V is a set of nodes and E is a set of edges.
Each node of V corresponds to a variable of V inM. Each
edge in E , denoted by a directed arrow →, points from a
nodeA ∈ U∪V to a different nodeB ∈ V if fB uses values
of A as input. Apparently, two different causal models are
associated with the same causal graph if they have the same
inputs for all equations.

An intervention on endogenous variable A is defined as
the substitution of structural equation fA(PAA, UA) with a
constant a, denoted as do(A = a) or do(a) for short. For
another endogenous variable B which is affected by the
intervention, its distribution under the intervention, called
the post-intervention distribution, is denoted as P (B|do(a)).
The ACE is defined as the difference of expected values of
B under two different interventions (Pearl 2009).
Definition 2. The average causal effect (ACE) of A on B is
given by E[B|do(a1)]− E[B|do(a0)].

Given a causal graph, if there exist two or more different
causal models associated with the causal graph that agree
with an observational distribution but result in different ACE
values, then this ACE is said to be unidentifiable (Avin, Sh-
pitser, and Pearl 2005). The complete graphical criterion of
ACE identifiability has been studied in (Shpitser and Pearl
2008) known as the “hedge criterion”.

An unidentifiable example. Figure 1 gives a toy exam-
ple where the ACE ofA andB cannot be uniquely identified
due to a hidden confounder U . Consider two causal models

with the same causal graph shown in Figure 1. Assume that
the two models have the same equations for determining the
values of C and A, but differ in the equation for determin-
ing the value of B, as shown in Tables 1 and 2. Denoting
the probability P (U = 1) as p, we can compute the joint
distribution P (A = a,B = b, C = c) represented by each
model by summarizing the probabilities of all values of U
that lead to A = a,B = b and C = c. For example, we can
obtain that P (A = 0, B = 0, C = 0) = (1 − p)P (C = 0)
for both models since in both models U must be 0 to get
A = 0 and B = 0 when C = 0. In fact, one can verify
that two models completely agree with the joint distribution
P (A,B,C). On the other hand, P (B = b|do(A = a)) =∑
u:fB(a,u)=b P (u) is computed by summarizing the prob-

abilities of all values of U that lead to B = b when fix-
ing the value of A to a. One can verify that, for the first
model (with equation f1B), P (B = 1|do(A = 1)) = 1
and P (B = 1|do(A = 0)) = 0; for the second model
(with equation f2B), P (B = 1|do(A = 1)) = p and
P (B = 1|do(A = 0)) = 0. Thus, the ACE is 1 for the first
model and p for the second. Assume that the true model is
either one of the two. Since they represent the same joint
distribution, there is no way to distinguish between them
based on the observational data. If we randomly guess the
true model from the two, the bias in estimating ACE can
vary from 0 to 1 depending on the value of p.

Bounding ACEs via Optimization
According to (Avin, Shpitser, and Pearl 2005), if an ACE is
unidentifiable, then there must exist multiple causal mod-
els that have the same observational distribution but pro-
duce different values of the ACE. Since there is no way
to distinguish these causal models using the observational
data, we are unable to compute the accurate ACE with-
out further knowledge or assumption about the underlying
data generating mechanism. However, from all these pos-
sible causal models if we can find the ones that produce
the maximal/minimal ACEs, then the maximum/minimum
in fact provide the tightest bounds of the unidentifiable ACE.
As such, the bounding exercise can be formulated as math-
ematical optimization problems for maximizing/minimizing
the ACE, where we need to examine all possible causal mod-
els. The challenge is that, in general we have no knowledge
about the equations and exogenous variables of the possible
causal models. Thus, for optimization we need to intention-
ally traverse all possible variable dimensions and domains,
all kinds of variable distributions, and all types of equations,
which is computationally impossible.

In (Balke and Pearl 1997), the authors proposed to par-
tition the domain of each exogenous variable into a lim-
ited number of equivalent classes, each inducing a distinct
functional mapping between endogenous variables. These
functional mappings are called the response functions. Con-
sider an endogenous variable V ∈ V, whose equation
v = fV (paV , uV ) is a mapping from PAV , UV to V . In gen-
eral, UV can be with arbitrary domain size, and fV can be
any function. However, for a given value uV , no matter what
dimension and domain UV has, fV is a deterministic map-
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ping from endogenous variables PAV to V , i.e., a response
function from PAV to V . Thus, by denoting response func-
tions as values of a variableRV , called the response-function
variable, the distribution of UV , i.e., P (uV ), can be equiva-
lently partitioned and translated into the distribution P (rV ).
Then, as UV varies along its domain, the only effect it can
have on V is to switch the response function among all pos-
sible response functions from PAV to V in the domain of
RV . It is known that we can use P (u) to express the joint
distribution P (v) as well as all ACEs (Tian and Pearl 2000).
The relationship between UV and RV means that we can
similarly use P (r) to do the same, where R denotes the set
of all response-function variables. As a result, by expressing
P (v) and the ACE using P (r), we can compute the lower or
upper bound of the ACE by searching for the P (r) that min-
imizes or maximizes the ACE, subject to that P (v) agrees
with the observational data. This would give us a linear pro-
gramming problem with P (r) as variables.

As can be seen, if PAV and/or V are continuous variables,
there will be an infinite number of response functions from
PAV to V , resulting a linear programming problem with infi-
nite variables P (r).Thus, the above method is limited to cat-
egorical endogenous variables and cannot directly extend to
the continuous domain. We tackle this challenge by adopting
the generative adversarial learning framework and represent-
ing candidate causal models in a parameter space such that
it can be searched using state-of-the-art optimization algo-
rithms. Consider to estimate response functions from PAV
to V by neural networks with a certain network structure.
This means that we can define the network parameters as
the response-function variables for summarizing all possi-
ble mappings from PAV , UV to V that could be estimated
by a fixed-architecture neural network. We then use the im-
plicit generative model to generate the distribution for the
response-function variable such that the domain of the dis-
tribution is represented as the parameter space of the gener-
ative model. We parameterize the causal model by express-
ing it with response-function variables.Finally, the param-
eterzied causal model is used to formulate an adversarial
learning problem for computing the bounds of the ACE.

In the following, we explain our method in details.

Parameterizing Causal Models
Specifically, for each endogenous variable V , a neural net-
work v = hV (paV ; θV ) with input paV and parameters
θV ∈ ΘV is used as a universal estimator of response func-
tions from PAV to V , i.e., we treat ΘV as the response vari-
able. Thus, the domain of UV is estimated by parameter
space ΘV of the neural network, and distribution P (uV ) is
correspondingly represented by the distribution over all pa-
rameters values, i.e., P (θV ). Then, to traverse distributions
over UV is simulated by traversing distributions over ΘV .
As a special case, if PAV = ∅, then we directly let v = θV
to represent a trivial mapping.

To generate different distributions for θV , we adopt
the implicit generative model (Mohamed and Lakshmi-
narayanan 2016). An implicit generative model defines a
stochastic procedure to generate data by transforming some
random noise to the data via some deterministic function. In

our problem, random noise zV is taken as input and trans-
formed into θV via a neural network GV (zV ). By conven-
tion, we refer to this neural network as a generator. Since
θV represents the response function for computing v, with
GV (zV ) we in fact define an implicit generative model for
generating v from zV , i.e., v = hV (paV ;GV (zV )). As a
result, by updating the generator, since parameter space ΘV

approximately represents the domain of UV , we can explic-
itly traverse possible distributions over UV no matter what
dimensions and domains it has.

Based on above discussions, to parameterize a causal
model, we define an implicit generative model for each
V ∈ V as follows.
Definition 3. For a causal model ∀V ∈ V, v =
fV (paV , uV ), its parameterized version is given by

∀V ∈ V, v = hV (paV ;GV (zV ))

where generatorsGV (zV ) contain parameters that are to be
learned from data.

For simplicity, we denote the parameterized causal model
as v = G(z) where z denotes the set of noise terms for all
endogenous variables.

Encoding independence assumptions. It is worth not-
ing that, since ΘV is a representation of UV , it should
inherit the independence relationship between UV and
other exogenous variables. That is to say, ΘV1

and ΘV2

should be (in)dependent if UV1
and UV2

are known to be
(in)dependent. We address this issue by using the same ran-
dom noise for generators GV1 and GV2 if UV1 and UV2

are dependent. More formally, as shown in (Tian and Pearl
2002), any causal graph can be decomposed into a num-
ber of disjoint components, called c-components, such that
any pair of exogenous variables are correlated if they belong
to the same component and independent if they belong to
different components. C-component factorization (Tian and
Pearl 2002) provides a way to group all correlated variables
together. For example, in Figure 1, A,B belong to one c-
component and C belongs to another c-component. In our
method, we adopt the c-component factorization to decom-
pose the causal graph into c-components. Then, we share the
same noise term among generators corresponding to vari-
ables within each c-component.

Optimizing ACEs
Our objective is to find causal models that bound the ACE
of interest. Given a parameterized causal model defined in
Definition 3, computing the ACE from it is straightforward.
For any intervention do(a′), we directly perform it to modify
the parameterized causal model as:

a = a′; ∀V 6= A, v = hV (paV ;GV (zV )).

Then, we estimate the value of an ACE of A on B by sam-
pling B from the intervened parameterized causal model.
We denote it as ACE(G;a1,a0) since the estimated value
depends on all generators. As a result, we can learn the
lower bound by minimizing ACE(G;a1,a0), and learn the
upper bound by maximizing ACE(G;a1,a0) or minimizing
−ACE(G;a1,a0).
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Meanwhile, we want the causal models searched in above
learning process to be confined to those agree with a given
observational distribution P (v). The parameterized causal
model allows us to compare the generated distribution with
the observational distribution, and use the discrepancy to up-
date generators. Similar to generative adversarial networks
(GAN) (Goodfellow et al. 2014), we make use of a discrim-
inator D to distinguish observational data from that gener-
ated by the parameterized causal model. We train the dis-
criminator to maximize its probability of assigning correct
labels, which is then used as a measure of the discrepancy
between the generated distribution and the observational dis-
tribution. Symbolically, it is given by maxD V (G,D) where

V (G,D)=Ev∼P (v)[logD(v)]+Ez∼P (z)[log(1−D(G(z)))].

When the generated distribution is equivalent to the obser-
vational distribution, we reach the theoretical minimal value
of maxD V (G,D). We denote this value bym, which varies
for different versions of the GAN model (e.g., it is equal to
− log 4 in the vanilla GAN (Goodfellow et al. 2014)).

Combining above two partial objectives, to obtain the
lower bound (similarly for the upper bound), we would like
to learn generators G that minimize ACE(G;a1,a0) subject
to that maxD V (G,D) ≤ m+η. Here η is a threshold which
specifies how close we want the generated distribution is to
the observational distribution. Ideally η should be set to 0 but
in practice we can set it to a small value to allow some room
for imperfect fitting. By introducing the Lagrange multiplier
λ, this constrained optimization problem can be converted
to an unconstrained optimization problem, given by

min
G

max
λ≥0

{
ACE(G;a1,a0) + λ

(
max
D

V (G,D)−m− η
)}

.

Since the first term is irrelevant to D, we can pull maxD out
of the sum. Finally, the optimization problem is defined as:
Problem 1. Given a causal graph and the data, the lower
bound (similarly for the upper bound) of the ACE of A on B
is computed by solving the optimization

min
G

max
λ≥0

max
D
{ACE(G;a1,a0) + λ (V (G,D)−m− η)} .

The pseudocode of above procedure is given in Algorithm
1 in the supplementary file.

The training procedure is as follows. We continually sam-
ple mini-batches of noise samples z. For each noise sample,
we compute the expressions of B prior and post to the inter-
vention do(a) based on the parameterized causal model. The
average of the post-intervention expressions of B is used
to compute ACE(G;a1,a0), and the average of the prior-
intervention expressions of B is used to compute V (G,D).
Then, we recurrently update the discriminator, λ, and gener-
ators based on the gradients of the objective function.

Example
We use the toy example shown in Figure 1 to demonstrate
how to formulate the optimization problem given a causal
graph. In general, the causal model of this example consists
of three structural equations: c = fC(uC), a = fA(c,uA),
b = fB(a,uB). We cannot observe the hidden confounder

Figure 2: The network architecture with three generators
GA, GB , GC for the causal graph shown in Figure 1. A dis-
criminator is used to measure the difference between the
generated data and the real data.

U , but assume that we knowA andB are confounded. Thus,
we define three neural networks (generators): GC , GA, and
GB . By conducting the c-composition factorization, we ob-
tain two c-components: {C} and {A,B}. So, generator GC
uses one noise term z1 and generators GA and GB share an-
other noise term z2. To construct the parameterized causal
model, sinceC has no parent,GC(z1) directly generates c to
represent a trivial mapping. On the other hand, a is generated
by the response function, a neural network hV (c;GA(z2))
with c as the input and GA(z2) as the parameters. Similarly,
b is generated by the neural network hV (a;GB(z2)) with a
as the input and GB(z2) as the parameters. As a result, the
parameterized causal model is given by

c = fC(uC)
a = fA(c,uA)
b = fB(a,uB)

parameterized
=======⇒

c = GC(z1)
a = hV (c;GA(z2))
b = hV (a;GB(z2))

The model structure is shown in Figure 2, and the ACE of A
on B is given by

ACE(G;a1,a0) =Ez2∼P (z2) [hV (a1;GB(z2))]

− Ez2∼P (z2) [hV (a0;GB(z2))] .

Implementation Considerations
In practice, the generative adversarial learning does not
guarantee to converge to the global optimum (Goodfellow
et al. 2014), which means that we may not be able to find
the optimal solution to Problem 1. However, the proposed
bounding method is still meaningful even if the optimal so-
lution cannot be obtained. Recall that the fundamental of
the bounding method is to search for all the causal models
that agree with the observational distribution and find the
maximal/minimal ACE among them. Thus, we can treat the
optimizing process as a constructive way of estimating the
ACE. That is to say, after the discriminator loss V (G,D)
becomes stable, each intermediate solution provides a feasi-
ble estimation of the ACE, which can be used to construct
the bounds. Formally, we examine the intermediate solu-
tions where constraint maxD V (G,D) ≤ m+ η is satisfied.
Then, we take multiple intermediate solutions to compute
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the mean and variance, and use the one sided confidence in-
terval to estimate the bound. This estimation is meaningful
as the causal models that agree with the observational distri-
bution rarely fall outside the interval. Experiments show that
this approach can provide good estimations to the ACE.

Our method relies on the input of the causal graph.
Many algorithms have been proposed to discovery the causal
structure with possible hidden confounding, such as the
well-known Fast Causal Inference (FCI) algorithm (Spirtes,
Meek, and Richardson 1995) and its extension tsFCI (Entner
and Hoyer 2010). We can adopt these algorithms for learn-
ing the causal graph from data in practice.

Linear Causal Models: A Special Case
In some situations we may assume that the mapping from
PAV to V for each variable V is a certain type of equation.
For example, linear causal models assume that all structural
equations in the model are linear. In this case, we can adopt
a simplified generative model to encode this assumption.
Specifically, for each variable V , we define the response
function as the inner product between a parameter vector
and the input, i.e., v = GV (zV ) · [paV , 1]T . The parame-
ter vector GV (zV ) = [θ

(1)
V , θ

(2)
V , · · · , θ(|paV |)V , gV (zV )] con-

sists of two part: one is a set of parameters θ(1)V , θ
(2)
V , · · · that

are irrelevant to the noise, and the other is a neural network
gV (zV ) that maps the noise to a single variable. Upon the
definition of the response function, the joint distribution and
the ACE could be expressed, and the optimization problem
could be formulated and solved similarly to Problem 1.

Encoding the equation assumption can reduce the search
space for finding causal models and shrink the bound-
ing range. The following proposition shows that, for lin-
ear causal models, if there exists an instrumental variable
for ACE of A on B, i.e., a variable that affects A and af-
fects B only by influencing A, then the ACE estimated from
Problem 1 would converge to a fixed value as the generated
distribution converges to the observational distribution. This
result is consistent to the well-known instrumental variable
formula (Bowden and Turkington 1984). Please refer to the
supplementary file for the proof.

Proposition 1. Let C be an instrumental variable for ACE
of A on B, then both bounds computed from Problem 1 will
converge to cov(B,C)

cov(A,C) (a1 − a0) if the generated distribution
converges to the observational distribution.

Experiments
We implement and evaluate the proposed bounding method.
We use both synthetic data and a real-world dataset, Adult
(Dheeru and Karra Taniskidou 2017). In addition to our
method, we also evaluate following baseline methods for in-
ferring the ACE. Previous bounding and estimation meth-
ods (Wu et al. 2019; Louizos et al. 2017) are not included as
they cannot handle continuous or high dimension treatment
attributes.

• Linear/logistic regression: We build a linear/logistic re-
gression on the outcome using all observed variables, and

then compute the ACE based on the coefficient of the
treatment variable.

• Instrumental variable estimation: We implement this
method following the classic instrumental variable for-
mula (Bowden and Turkington 1984).

• Propensity score adjusted regression: We adopt the
propensity score adjusted regression explained in (Abdia
et al. 2017) and follow the method in (Hirano and Imbens
2004) to handle continuous variables.

Experimental Settings In the implementation of our
method, we use one hidden layer with 16 nodes for all gener-
ators GV (·) and neural networks hV (·; ·), and use ReLU as
the activation function. For the discriminator, we adopt the
framework of Wasserstein GAN (Arjovsky, Chintala, and
Bottou 2017), which leverages the Wasserstein distance be-
tween observational and generated distributions. The bene-
fits of using the Wasserstein GAN are to stabilize the training
and provide a meaningful loss metric to indicate properties
of convergence. In addition, the adaptive gradient clipping
(Belghazi et al. 2018) is also used to stabilize the training.
The threshold η in the constraint is set to 0.001, and we take
50 solutions satisfying the constraint to compute the mean
and variance. The upper bound is computed as mean + std,
and the lower bound is computed as mean− std.

Synthetic Data
We manually build a causal graph (shown in Figure 3) with
5 continuous endogenous variables, Z,X,W, V, Y . We as-
sume that the exogenous variables associated with X and
V are confounded by a hidden variable U1; the exogenous
variables associated W and V are confounded by another
hidden variable U2; and other pairs of exogenous variables
are independent. To completely specify the causal model, all
exogenous variables are Gaussian or mixed-Gaussian noises
with zero mean and variance= 0.1.

To illustrate the capability of coping with nonlinear causal
model, we design the causal model as follows.

u1 = ε1, u2 = ε2, z = Uniform(θz1 , θ
z
2) + εz

x = θx0 + θx1z + θx2u1 + εx, w = θw0 + θw1 x
2 + θw2 u2 + εw

v = θv0 + θv1u1 + θv2u2 + εv, y = θy0 + θy1w + θy2v + εy

where ε1, ε2, εz, εx, εw, εv, εy are independent Gaussian
noises. After specifying the causal model, we generate
10,000 examples without hidden variables U1, U2 which
are then used by all methods for estimating the ACE. The
ground truth of the ACE is directly obtained by performing
the intervention on the causal model. For instrumental vari-
able estimation, Z is treated as the instrumental variable.

Results The experimental results are shown in Figure 4.
ACEs are obtained by performing different interventions,
i.e., E[Y |do(x1)] − E[Y |do(x0)] with different x1 and x0.
For demonstration, we select five interventions and report
the corresponding ACEs. We see that our upper bound and
lower bound cover the ground truth in all interventions.
However, other baseline methods cannot produce accurate
estimations and fall outside the bounds in most cases. This
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Figure 3: The causal graph of synthetic data: Z,X,W, V, Y
are observed variables and U1, U2 are hidden variables.
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Figure 4: Average causal effects with different interventions
(x0 = 2) on the nonlinear synthetic dataset.

may be due to the fact that their assumptions (e.g., strong
ignorability for propensity score, and linear assumption for
linear regression and instrumental variable formula) do not
hold in our general setting. Especially, note that when x1 =
1, our bounds can help estimate the correct sign of the ACE,
while other methods produce opposite estimations.

We also evaluate the special linear case as described in
the previous section and obtain similar results. Please refer
to the supplementary file for details.

Adult Dataset
We further conduct evaluations on the real-world Adult
dataset.The Adult dataset consists of 48,842 tuples with 11
attributes. We make use of the causal graph in (Zhang, Wu,
and Wu 2018) shown in Figure 5. With all the attributes ob-
served, we evaluate the ACE of edu level (which ranges
from 0 to 16 with 0 the lowest level) on income (1 if
> 50K and 0 if ≤ 50K) as the ground truth by using the
code from (Xu et al. 2019).

In order to simulate hidden confounders, we deliberately
hide 5 attributes (denoted by dotted nodes in Figure 5), and
treat the remaining attributes (denoted by solid nodes) as ob-
served to compute the ACE. In this setting, we can easily
see that native country and race are two hidden con-
founders. Meanwhile, marital status is also a hidden
confounder since it is a confounder between edu level
and occupation while the latter is an intermediate on a
causal path from edu level to income, resulting con-
founding effects of edu level on income. As a result,
the ACE of edu level on income is unidentifiable. Our
method is implemented using the sub-graph induced by the
observed attributes. All baseline methods are computed us-
ing observed attributes only. Since there is no instrumental

age
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occupation relationshiphours_per_week workclass

native_countryrace sex

Figure 5: The causal graph of the Adult dataset.
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Figure 6: Average causal effects with different interventions
(x1 = 16) on the Adult dataset.

variable for the ACE of edu level on income, the in-
strumental variable estimation is not performed.

Results The experimental results are shown in Figure 6.
ACEs are evaluated by performing different interventions
E[Y |do(X = x1)] − E[Y |do(X = x0)], and we report 10
interventions where x1 = 16 and x0 ranges from 1 to 10.
In general, the ground truth decreases from 0.11 to 0.04 as
x0 increases. It falls in the range of the upper bound and
lower bound in all interventions, which validate the efficacy
of our method. However, other baseline methods including
the logistic regression and propensity score cannot produce
accurate estimations and fall outside the bounds in all cases.

Conclusions
We proposed a bounding method for estimating average
causal effects (ACEs) from observational data with hidden
confounding. The method parameterizes the causal model
using implicit generative models, and builds an adversarial
network to formulate a constrained optimization problem for
computing the bounds. We showed that encoding the linear
assumption can make the bounds converge to a fixed value.
Experiments using both synthetic and real-world datasets
showed that our method provides more accurate estimations
than several widely used causal inference methods.
Reproducibility. The source code is available at https://
github.com/yaoweihu/Bound-Confounded-Causal-Effects.
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These works usually rely on analyzing causal effects of sen-
sitive attributes such as gender or race on decisions such as
hiring or admission. Such analysis can be performed either
on the training data so that the data could modified before
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and facilitate the research in fair machine learning.
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