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Pseudocode of ACE Bounding Procedure
The pseudocode of the ACE bounding procedure described
in the main paper is given in Algorithm 1.

Algorithm 1: ACE Bounding Procedure
Input : (Confounded) causal graph, variable A with two

values a0, a1, and variable B.
Output: Lower (or upper) bound of the ACE of A on B.

1 Decompose the causal graph to c-components, and define
noise terms z, one for each c-component;

2 For each variable V , define a neural net v = hV (paV ; θV )
with parameter θV (if V has no parent, the neural net
becomes a trivial mapping v = θV );

3 For each θV , define a generator θV = GV (zV ) where zV
is the noise term of the corresponding c-component;

4 Sample generated distribution G(z), feed together with the
observational data into discrimination D to obtain value
function V (G,D);

5 Intervene A to a0 and a1, sample generated values of B to
compute ACE(G;a1,a0);

6 Solve the optimization problem:
min
G

max
λ≥0

max
D
{ACE(G;a1,a0)+λ (V (G,D)−m−η)};

Proof to Proposition 1
Proposition 1. Let C be an instrumental variable for ACE
of A on B, then both bounds computed from Problem 1 will
converge to cov(B,C)

cov(A,C) (a1 − a0) if the generated distribution
converges to the observational distribution.

Proof. Without loss of generality, we present our proof us-
ing the example in Figure 1 in the main paper, where C is an
instrumental variable for ACE of A on B. The linear param-
eterized causal model is given by

c = gC(z1), a = θA · c+ gA(z2), b = θB · a+ gB(z2)

The ACE can be directly obtained as E[θB · a1 + gB(z2)]−
E[θB · a0 + gB(z2)] = θB · (a1 − a0). As the generated
distribution converges to the observational distribution, we
have that P (gC(z1)) with z1 following P (z1) will converge
to P (c). Meanwhile, P (θA · c + gA(z2)) and P (θB · a +
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gB(z2)) with z1 following P (z1) and z2 following P (z2)
will converge to P (a) and P (b) respectively, i.e.,

gC(z1)∼
z1∼P (z1)

P (c) (1)

θAgC(z1) + gA(z2)∼
z1∼P (z1), z2∼P (z2)

P (a) (2)

θB(θAgC(z1) + gA(z2)) + gB(z2)∼
z1∼P (z1), z2∼P (z2)

P (b)
(3)

It follows that

Ez1 [gC(z1)] = E[C] (4)
θAEz1

[gC(z1)] + Ez2
[gA(z2)] = E[A] (5)

θB(θAEz1
[gC(z1)] + Ez2

[gA(z2)]) + Ez2
[gB(z2)] = E[B]

(6)

In addition, from Eqs. (1) and (2) we have

θAEz1 [g
2
C(z1)] + Ez1,z2 [gC(z1)gA(z2)] = E[AC] (7)

and from Eqs. (1) and (3) we have

θB(θAEz1
[g2C(z1)] + Ez1,z2

[gC(z1)gA(z2)])

+ Ez1,z2 [gC(z1)gB(z2)] = E[BC].
(8)

By combining Eqs. (4), (5) and (7) we have
θAvar(gC(z1)) = cov(A,C), and from Eqs. (4), (6)
and (8) we have θBθAvar(gC(z1)) = cov(B,C). As a
result, we have that θB converges to cov(B,C)

cov(A,C) , meaning

that the ACE converges to cov(B,C)
cov(A,C) (a1 − a0) for both

bounds.

Experiments
All the experiments were conducted in an Ubuntu 18.04 PC
with Intel Core i7-9700K and 16GB RAM. The implemen-
tation was developed using Ananconda, an open-source dis-
tribution of Python 3.8. The neural networks were imple-
mented in PyTorch (Paszke et al. 2017).

Synthetic Data with Linear Settings
To evaluate the special linear case, we slightly modify the
causal model of the synthetic data by substituting the non-
linear W equation with w = θw0 + θw1 x+ θw2 u2 + εw. Sim-
ilarly, we generate 10,000 samples with the other settings
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Figure 1: Average causal effects with different interventions
(x0 = 0) on the linear synthetic dataset.

unchanged. The results of experiments in the linear setting
are shown in Figure 1. As can be seen, our upper bound
and lower bound cover the ground truth in all intervention
cases, and the range between the bounds is significantly re-
duced compared with the non-linear setting. The range is
not negligible in some cases, probably due to the random-
ness in the training process and the imperfect fitting to the
observational distribution. We expect that stronger genera-
tors may produce tighter bounds, and will evaluate different
generators in our future work. As for baseline methods, the
propensity score method still does not perform well, but the
linear regression and instrumental variable methods can pro-
duce good estimations due to the satisfaction of the linear
assumption.
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